

On Movement Activities Estimation for Mobile Opportunistic Networking

Austrian-Italian Workshop on Future Internet Challenges Università di Pavia - May 4, 2011

Andrea Hess

University of Vienna, Research Group Entertainment Computing

Overview

- Movement feature extraction from every-day trips
- Method for estimating type of movement activity based on features
- Final objectives
 - Investigate use of activity information in opportunistic networks
 - Estimate preferable forwarding nodes in delay-tolerant routing
- · First results described in:
 - Karin A. Hummel, Andrea Hess: Movement Activity Estimation for Opportunistic Networking Based on Urban Mobility Traces.
 3rd IFIP Wireless Days (WD'10). Venice, Italy, October 20-22, 2010.
 - Karin A. Hummel, Andrea Hess: Estimating Human Movement Activities for Opportunistic Networking: A Study of Movement Features.
 IEEE WoWMoM 2011, Lucca, Italy, June 20-24, 2011.

Outline of the Talk

- Motivation
 - Mobility-assisted forwarding in opportunistic networks
- Deriving features from mobility traces
- · Use mobility features to estimate activities
- Experimental results
 - Empirical CDF of mobility features
 - Movement activity classification based on Naïve Bayes
- · Conclusion and future work

Model to Estimate Movement Activities

- · Movement Activity
 - = composition of movements, name corresponds to trip purpose
- Bayes classification approach
 - detect activity given a specific mobility feature vector

$$P(A_j|V_i) = \frac{P(V_i|A_j)P(A_j)}{P(V_i)}$$

- A_i ... movement activity
- V_i ... feature vector observed
- · GPS-based positioning method
 - offers finer granular movement information than cellular or WLAN data
- · Define feature set based on literature survey

Typical Features Extracted - Summary of Literature Survey

- Spatial characteristics
 - Prevalence fraction of time user spends at an AP spatial distribution -> 'location visiting preferences', 'hotspot regions'
 - Activity range area covering all locations that have been visited
- · Temporal characteristics
 - Pause time
 - Persistence time a user stays continuously connected to one AP
- Spatio-temporal characteristics
 - Revisit metrics, e.g., 'periodical re-appearances', 'return time'
 - Meeting metrics, e.g., 'inter-contact time', 'contact time', 'inter-meeting time', 'time distance'

Feature Extraction I

- · Direct metrics derived from traces
 - 1. Velocity

speed between two positions measured consecutively (position sampling interval is 1 s)

- 2. Direction changes

 $\ difference\ between\ current\ direction\ and\ direction\ measured\ 20\ m\ earlier$

- · Spatial metrics
 - 3. Flight length

length of path (in meters) traveled between two consecutive pauses

- 4. Mobility range

distance of GPS position to the center of rectangle covering trip

Feature Extraction II

- · Temporal metrics
 - 5. Pause time

duration between two consecutive movement phases (v<0.5 m/s for $t \ge 5$ s)

- 6. Start time
 - hour of day trip started
- · Combined metrics
 - 7. Number of revisits of a position position is assumed to be the same if within position radius of 20 m
 - 8. Time between revisits

Study of Movement Features for Activity Estimation

- Can activities be recognized based on mobility feature set?
- 4 types of movement activities considered
 - Way to work
 - Evening activity
 - Shopping activity
 - Tourist activity
- Data set of 252 trips
 - GPS traces of daily trips of 13 test persons
 - semantic information about trips noted by test persons
- · Empirical CDF for 8 features
 - determine suitability for activity estimation
- · Naïve Bayes classifier
 - categorize trips into 4 activities

Features Observed - Ex 1: Flight Length

- Tourist: 80% below 230 m corresponds to the behavior of tourists walking between sights
- Way to Work and Evening: longer flight lengths due to public means of transport and cars

Features Observed - Ex 2: Time betw. Revisits

- Way to Work: 99% of return times < 160 s
 (e.g., walking back a street after getting off a bus)
- Evening: highest values due to longer pauses and similar return paths
- **Shopping**: 90% of positions revisited after 20 min, small number up to 75 min

Features Observed - Ex 3: Start Time

- Way to Work: 55% from 6:00 to 10:00, wider range for second bunch of trips
- Evening: 17:00-23:00 as one would expect
- Shopping and Tourist: Tourist curve shows steeper ascent in the afternoon, Shopping trips start earlier in the morning

Movement Activity Recognition - Classification Results

- Training of Naïve Bayes classifier
 - 50% of trips in each activity category
- Overall success rate of 80.65%
 - Classification matrix:

	Assigned label				
	A	В	C	D	
Evening (A)	16	0	1	3	
Shopping (B)	0	-8	2	4	
Tourist (C)	0	6	8	1	
Way to Work (D)	4	0	3	68	

- Trips classified wrongly expose similarities
 - e.g., some *Tourist* trips show similarities with *Shopping* trips
 - Way to Work trips classified as Evening trip if taking place with pauses at a later hour

Fitting Set of Movement Features

- · Test all feature combinations
 - classify test set by using reduced feature set (1 to 7 features out of 8)
 - Mean success rate [%] and standard deviation:

			Number of features (n)				
	7	6	5	4	3	2	1
Mean	79.74	77.71	76.40	73.76	71.39	67.68	62.30
Stdv	1.32	1.95	2.63	2.93	4.07	4.71	3.65

- Combination of six features
 - best combination of six features achieves 80.65% as well
 - omitting important features num. of revisits, start time yields lowest rate
- · Combination of two features
 - num. of revisits and start time achieved best result

Conclusion and Future Work

- Activity estimation based on mobility features
 - 4 typical movement activities, 8 features
 - 80.65% success rate for Naïve Bayes approach
- · Potential use of activity estimation
 - forwarding in mobility-assisted networks
 - estimate user-caused network traffic
 - applications: situation-aware services
- Current and Future Work
 - extend data set of daily trips
 - correlation betw. activities and forwarding behaviour
 - propose best forwarding node estimation for routing mechanism