An Overview on
Client-Centric Cloud Computing

Károly Bósa, Roxana Chelemen, Harald Lampesberger, Mariam Rady, Boris Vleju

The Christian Doppler Laboratory for Client-Centric Cloud Computing

June 24th, 2014
Outline

1. Introduction: Client-Centric Cloud Computing in CDCC
2. An Overview on the Middleware-Based Approach
3. Security and Privacy
 - Access Control (AC) based on Service Plots
 - Dynamic Context-Aware Access Control
 - Identity Management Machine (IdMM)
 - Intrusion Detections
4. Client Needs
 - Content Adaptation
 - Client-to-Client Interaction (CTCI) in Cloud Computing
 - Supporting Multi-Cloud Applications
5. SLA Management
6. Conclusion
Nowadays “cloud computing” is one of the most often used buzzword in computing

- Many providers (Amazon, Google, Microsoft, IBM, etc.),
- Many kind of cloud services (IaaS, SaaS, PaaS, DaaS, . . .) and
- Many benefits of outsourcing application into a (private or public) cloud.

Is it a mature technology? Is ready to be massively used?
Our Conviction (at CDCC) cloud computing still requires lots of fundamental research.

Among many other problems we identified e.g.:

- **lack of client orientation** (tenants/customers loose the control over their intellectual properties) and
- lack of formal models and foundation (e.g.: notion of key components like services not defined).
The components of this client-controlled interaction middleware are only loosely coupled (they are independent from each other).
Since middleware is located on the client side, it can be easily adapted to nowadays leading cloud architectures (e.g.: Amazon S3, Microsoft Azure, IBM SmartCloud, etc.).

The feasibility of the developed proof of concept solutions is tested on OpenStack cloud infrastructure software on an IBM CloudBurst machine.
Goals:
- Providing a transparent and uniform access control mechanism for cloud services without giving up the flexibility of heterogeneous cloud access to these services,
- via which owners or clients of cloud services are able to fully control the usages of their cloud services for their end users.

Advantage of our Approach:
- Not only certain service usage can be allowed, but their permitted combinations (plot) of their functions can be composed individually for end-users by clients.
We target a new kind of AC (cloud) service
- whose customers are enterprises
- who own or pay for various cloud services provided by one or multiple clouds and
- who want to have direct influence how these cloud services are accessed and used by their end-users (employees or partners).
The Access Control component should also consider the context constraints in organizational settings:

- temporal context of a particular task execution (which time a request was triggered),
- spatial context of a particular task execution (from where and on which end-device a request was triggered),
- user-specific attributes (e.g.: the task execution history of a user).

Work related to this topic just has been started...
Use Case(s)

- Nowadays, due to modern mobile devices and cloud technology
 - difficult to manage devices and the cloud
 - difficult to protect sensitive data and
 - almost impossible to separate the treatment of corporate and private identities, etc.

- Because of this lots of people are simply no longer willing to deal with all these things and they use everything everywhere, e.g.:
 - they work from home or from public places (e.g.: cafes, airports, etc.),
 - they read the corporate e-mails on their (private) mobile phones and/or
 - they store business critical data in Dropbox, etc.

- A cloud-enabled context-aware RBAC solution could handle these issues properly.
Goal: It is an identity management facility whose purpose is
to make the adoption or migration of user accounts to cloud services
faster by handling identities of end users and providing a
privacy-enhanced solution.

Can be used as an integrated service or as a stand-alone service

All user identity data is stored in a directory which is located on-premise
Advantages of our Approach

- Provides a single sign on proxy for the user
- Automatically authorizes and authenticates the user to a given service
 - Uses real and obfuscated identities for authentication
 - A user may not be aware of his or her credentials to the cloud service.
- Manages user provisioning/de-provisioning
 - Creates, edits or removes cloud-based accounts (identities)
 - Periodic password resets of these accounts
 - Creates, edits and removes client side accounts
 - When a user leaves the company:
 - Only the client-side identity is removed
 - The cloud-based accounts may be re-used for obfuscated cases
 - Since the user does not know the credentials he or she cannot use the service
- Acts as an identity provider
Goal:

- Our intrusion detection system is going to monitor the effectively communicated protocol language to detect anomalies in client-cloud interaction.

- Anomalies can correlate to attacks that exploit software vulnerabilities on the client- or service-side.

Advantages of our Approach:

- State-of-the-art systems match for known patterns or symptoms. But modern attacks try to evade detection.
 - Nevertheless, an attack affects the protocol language, therefore constructing specific language models for accessed cloud services and learning to recognize deviations from the modeled intended usage is possible.

- For now we focus on automaton-based language models for XML-based protocols.
 - The automaton captures the intended common structure of XML documents and content.
Use Case(s)

- An intrusion detection component in the middleware detects anomalies in interaction between clients and services.
 - Depending on the severity of the detected event, access control rules are changed dynamically to minimize risk.
Goal: Providing on-the-fly adaptivity of cloud applications to different services, devices (e.g.: smartphones, tablets, laptops), preferences and environment.

Features/Advantages:
- No specific application for each type of device (only one (Web) application for all devices).
- The content of a web page is adapted on the middleware corresponding to the properties of the device detected on the client-side.
- The application is based on an abstract model built from the requirements (using Abstract State Machines).
Use Case(s)

- Nowadays people focus a lot on flexibility at work:
 - Content Adaptation could be used by some companies to make the necessary applications available to their employees also outside the office.
 - The employees could continue their work from home or while traveling using the devices they have at hand (mobile, tablet or laptop) and this without installing specific applications.

- A working scenario:
 - A database manager application is deployed on the Cloud.
 - The users (e.g.: employees) access the corresponding services (e.g.: create, read, update, delete) using different devices through the web application.
 - The services are always adapted to the properties of the device.
Goal: The realization of our Client-to-Client Interaction (CTCI) mechanism can be regarded as a special kind of services we call channels

- via which registered cloud users can interact with each other in a direct way
- And they are able to share available cloud resources.

Advantages of our Approach:
- Cloud Service Transparency
Use Case(s)

1. Connecting devices of the *same* user via the cloud employing transport local area protocols.

2. Switching services: the role the middleware plays in this case is to switch service functionalities and stored data from one user/device to another (e.g.: dissemination of multi-media data such as photos or videos).

3. Anonymous cloud service usage:
 - Since all the shared services are used on behalf of its initial distributor
 - no traces of the user activities belonging to the shared services will be left on the cloud,
Goal: Providing functionalities
- which enables many-to-many relationship between cloud service providers and clients

Advantages of our Approach: development of Service-Centric Applications (SCA) is made possible:
- where some clients/customers of the middleware may combine several services offered by different service providers located on various clouds in some intelligent way and
- then offer them as new services.
Goal: Developing approaches, tools and mechanisms used in different phases of the SLA lifecycle

- Creation Phase: the formal definition of SLAs
- Operation Phase: monitoring of service execution adherence to the agreed terms.
- Termination Phase: ending the agreement

A Service Level Agreement is a contract to agree on the provided service level between the provider and the consumer.

Advantages of our Approach:

- expressive, structured and machine readable language for SLA definition.
- client-centric (user-oriented) SLA, making the contracting process more realistic.
- model captures abstract client-cloud interaction, on which the monitoring tools can be based.
- removing the burden from the user to recognize breaches of the SLA, notify the service provider and request credit.
Use Case(s)

- An SLA is comparable to a warranty. It guarantees the service as a guarantee promises your car won’t break down.

- Nowadays, SLAs are defined by the service provider and the client has no contribution in the contracting process.
 - Limited liability of the provider (e.g.: it is the clients responsibility to recognize SLA violations and report them to the provider.

- SLAs cannot make a good service out of a bad one, however, they can mitigate the risk of choosing a bad service.
We defined the SLA using an ontology, OWL, DL.

In order to develop the ontology:
- defining the context in which the ontology is going to be used (client-centric, service model, requests).
- defining top level concepts
- refining the different concepts to include subconcepts and relations between the different concepts.
- SLA Ontology
SLA Management → Creation Phase-SLA Instantiation

Figure: Example Scenario
Monitor the compliance of the SLA to the service

Proof that the SLA ontology is sufficient → Refine again.

We focus on Availability, Performance and Security.

We need to have an analysis component to measure availability and performance of a cloud service to be able to add this information to the SLA and check for the service level compliance to the SLA.
Client Centric Cloud Computing

Middleware based approach

- Security and Privacy (Access Control, Identity Management, Intrusion Detection)
- Client Needs (Content Adaptation, CTCI, Multi-Cloud Support)
- SLA Management

a short dive into SLA Management.
Contacts → Thank You for Your Attention

- Karoly Bosa (k.bosa@cdcc.faw.jku.at)
 - Access Control based on Service Plots
 - Client-to-Client Interaction in Cloud Computing
 - Supporting Multi-cloud Applications

- Roxana Chelemen (roxana.chelemen@cdcc.faw.jku.at)
 - Content Adaptation

- Harald Lampesberger (h.lampesberger@cdcc.faw.jku.at)
 - Intrusion Detections

- Mariam Rady (m.rady@cdcc.faw.jku.at)
 - SLA Management

- Boris Vleju (b.vleju@cdcc.faw.jku.at)
 - Dynamic Context-Aware Role-Based Access Control
 - Identity Management Machine (IdMM)