

Protecting Web Servers From Web Robot Traffic

Derek Doran derek.doran@wright.edu

Department of Computer Science & Engineering Kno.e.sis Research Center Wright State University, Dayton, OH, USA

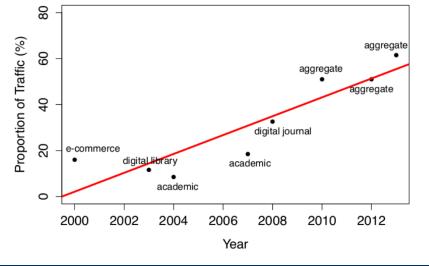
Outline

- Introduction and motivation
- Analysis of Web robot traffic:
 - Robot detection
 - Performance Optimization: Predictive Caching
- Future research

Introduction and motivation

• Web robots are critical to many functions and services:

- Internet Search
- E-Business (shopbots)
- Private, Proprietary Systems
- Latest reports (Dec. 2013): over 60% of Web traffic! http://www.incapsula.com/blog/bot-traffic-report-2013.html



Bot Traffic Report 2013 Bot visits are up by 21% to 61.5% of all website traffic

Malicious Bots by Type					
Scrapers	Hacking Tools				
The Damage	The Damage				
 Content theft and duplication. 	Data (e.g. credit card) theft.				
Theft of email addresses for spam purposes.	 Malware injection and distribution. 				
 Reverse engineering of pricing and business models. 	Website/Server hijacking: Website defacement and content deletion. The Target Anyone: Most commonly CMS based websites (WP, Joomla, Vbulletin, Magento, etc.)				
The Target Anyone. Most commonly travel industry websites, classifieds, news sites, e-stores and forums.					
spammers	tmpersonators				
The Damage	The Damage				
 Posting of irrelevant content that 	 Marketing intelligence gathering. 				
 Posting of malware/phishing links that can harm your visitors. 	 Layer 7 DDoS attacks, which result in service degradation and website downtime. 				
 Turning the site into a "link farm", causing Search Engine blacklisting. 	 Bandwidth consumption and service degradation (Parasitic drag). 				
The Target	The Target				
Blogs, forums and all other websites that allow comment posting.	Anyone.				
Brought to you by					
Incapsula	www.incapsula.com				

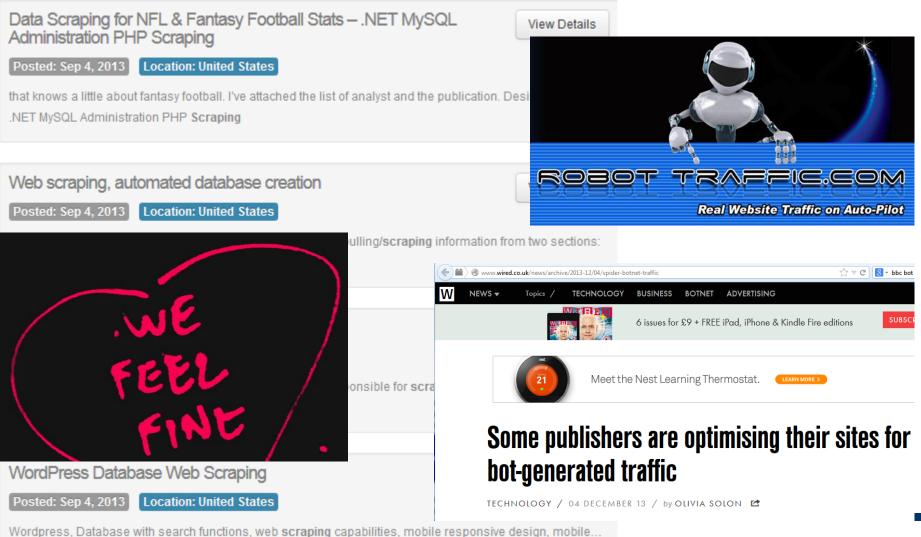
Ohio Center of Excellence in Knowledge-Enabled Computing

3

Introduction and motivation

- Within the past 5 years: <u>fundamental shifts</u> in how the Web is used to communicate and share information
 - *Dynamic* vs. static pages
 - Users *produce* vs. consume information
 - Subscriptions vs. searching
- Now, data on the Web <u>has never been more valuable</u>
 - 25% of search results for the largest commercial brands are for *user-generated content*
 - 34% of bloggers post opinions about brands
 - 78% of users trust peer recommendations over ads
 - 80% of organizations incorporate social network data in recruitment practices
- Organizations seek to leverage this valuable, dynamic, time-sensitive data, to stay relevant

A New Web Economy...



Also inquiring if web scraping capabilities can be ...

Computing 5

Introduction and motivation

• The volume and intensity of robot traffic will further grow over time!

KNO.E.SIS

- Web servers optimized only to service *human traffic* with very high performance
 - Workload generation
 - Predictive and proxy caching
 - Optimal queuing, scheduling
- <u>Unprepared to handle robot traffic -</u> current knowledge of Web traffic may not transcend to robots!
- Objective: To perform a comprehensive analysis of Web robot traffic, and to prepare Web servers to handle robot requests with high performance

Outline

- Introduction and motivation
- Analysis of Web robot traffic
 - Robot Detection
 - Preparing Web Servers: Predictive Caching
- Future research

Robot detection

- Deficiency in state-of-the-art: focuses on finding commonalities across robot sessions
 - Behavior changes over time, and from robot to robot
- Requirements for more accurate and reliable detection
 - Find *distinctions* between robots and humans rather than commonalities between robots
 - Root detection on a *fundamental* difference between human and robot behavior
 - No matter how robots evolve, this difference remains
 - Analytical, self-updateable model
 - As behaviors change over time, so does the detection algorithm

Robot detection

- Fundamental difference: Session request pattern:
 - The order in which resources are requested during a session
- Properties of human session request pattern:
 - Governed by a Web browser
 - Associated with site structure
 - Target specific resources
- Properties of robot session request pattern:
 - No governing interface
 - Requests any resources, at any time
 - May target very specific resources depending on functionality

Session request pattern

- Request patterns must be generic enough to characterize many different sessions in a similar way
- Partition resources into various classes

Class	Extensions
text	txt,xml,sty,tex,cpp,java
web	html,asp,jsp,php,cgi,js
img	png,tiff,jpg,ico,raw
doc	xls,doc,ppt,pdf,ps,dvi
av	avi,mp3,wmv,mpg
prog	exe,dll,dat,msi,jar
compressed	zip,rar,gzip,tar,gz,7z
malformed	Req. strings not well-formed
no extension	Request for dir. Contents

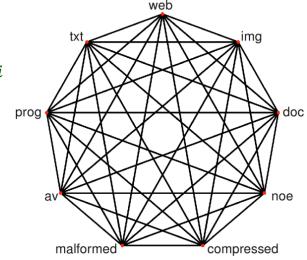
Detection Algorithm

- Encode session request patterns of robots and humans into two different discrete time Markov Chains (DTMCs) $R = (s_r, P_r)$ and $H = R = (s_r, P_r)$
 - Parameters estimated from logs
- Detection algorithm
 - For an unlabeled session

$$x = (x^1, x^2, \dots, x^n)$$

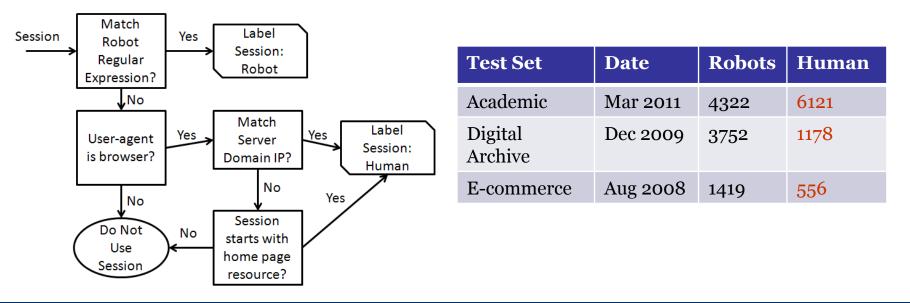
Compute probability *R* or *H* generates *x*: $\log(Pr(x|s_r, P_r)) = \log(x_r^1) + \sum_{i=2:n} \log[P_r]_{x^{i-1}, x^i}$

Label x as a robot if $Pr(x|s_r, P_r) > Pr(x|s_h, P_h)$

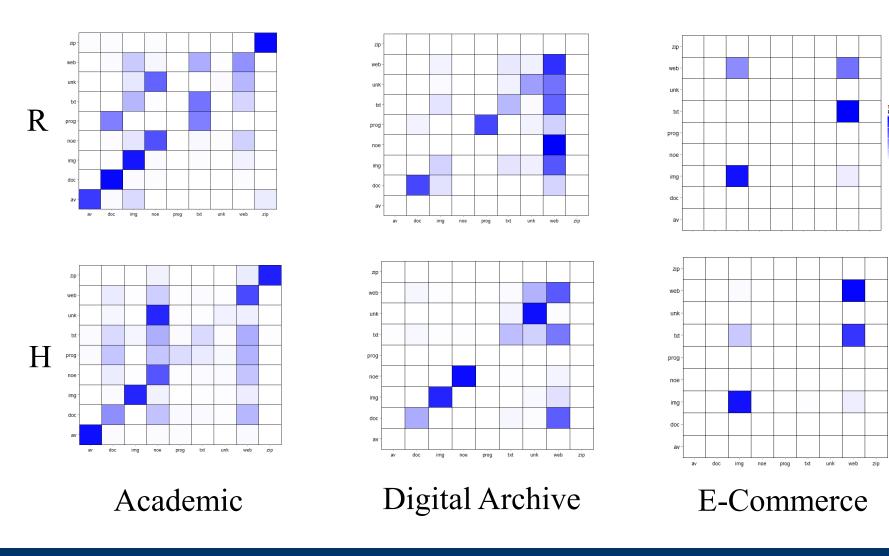


Datasets

- We consider data from one-year access logs over a variety of servers:
 - Academic: University school of Engineering
 - E-commerce: Univ. of Connecticut University bookstore
 - Digital Archive: Online database of United States Public Opinion Information
- Millions of access logs across each Web server
- Using a heuristic approach, divided the logs into robot and human requests



DTMC Comparison (Behavior Fingerprints)



KNO.E.SIS

0.50

0.25

0.00

Transition Probability 1 00

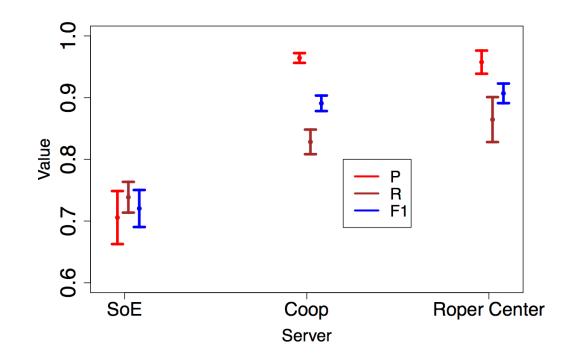
0.75

0.50 0.25

0.00

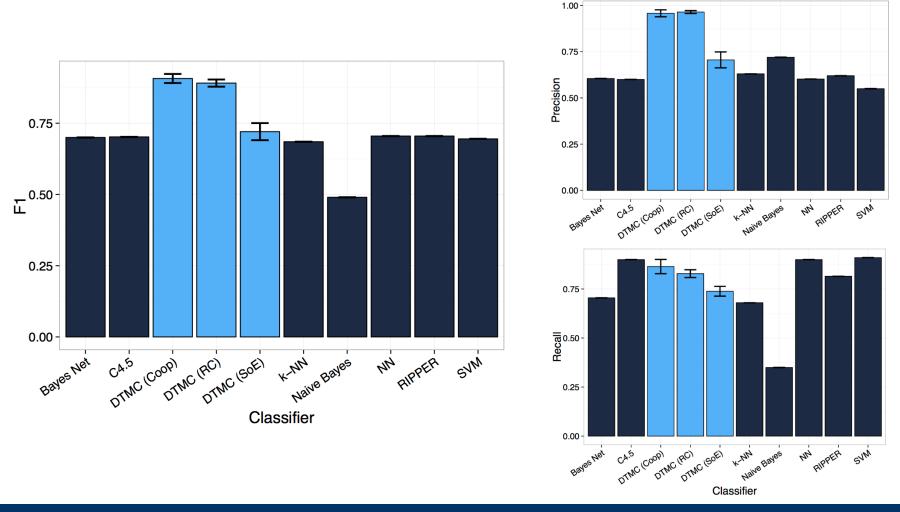
Offline detection

- Performance evaluated using precision, recall and F1
 - Precision: true pos. count / true pos. + false pos. count
 - Recall: true pos. count / true pos. + false neg. count
 - F1: harmonic mean of precision, recall



Comparative Analysis

KNO.€.SIS



Real-time detection

- Offline detection is an `after-the-fact' analysis
 - Great for log processing; statistical analysis
 - "Damage survey"
- Real-time detection catches robots in the act
 - Differentiable treatment of robots and humans
 - Control and handle crawling activities
 - "Damage control"
- State-of-the-art methods offer an *engineered* solution
 - Painful for the users (CAPTCHA)
 - Complex server-side systems target specific classes of robot traffic
 - Difficult to implement and maintain in practice

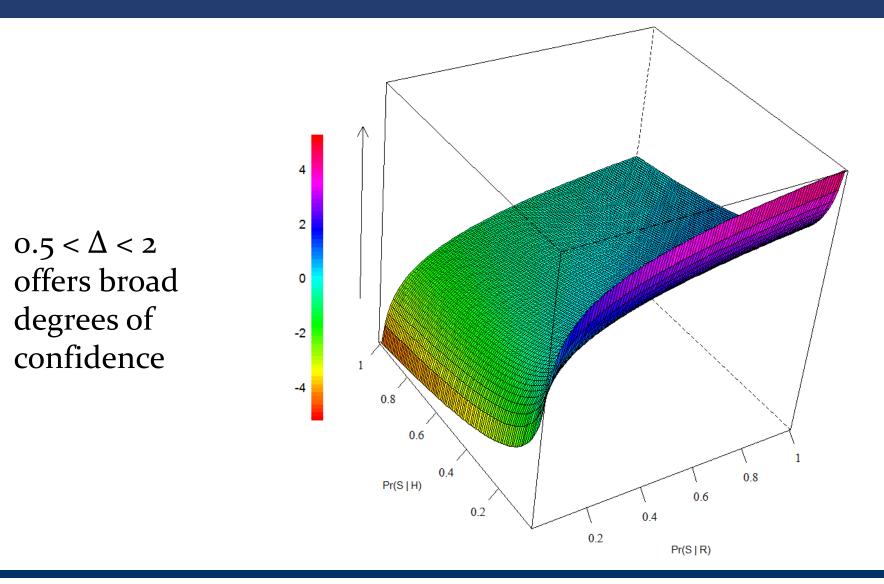
Real-time detection

- We can adopt our offline algorithm to run in real-time:
 - 1. For every active session s, maintain Pr(s | R); Pr(s | H)
 - 2. On new request, update Pr(s|R), Pr(s|H).
 - 3. If number of requests is > k and the difference in log-probabilities exceeds a threshold Δ , classify.

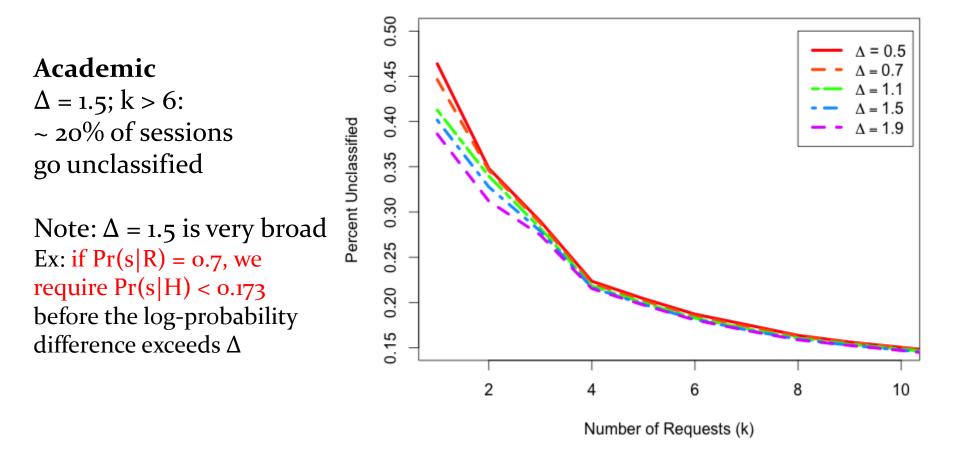
Parameter functions:

- k give Pr(s|R), Pr(s|H) chance to stabilize
- Δ tune tradeoff between reliability and need to classify
 - Low Δ : We classify more sessions, but may be less accurate
 - High Δ : Very confident classifications, but sessions may go unlabeled
- Choice of Δ depends on the Web server

Choices of Δ

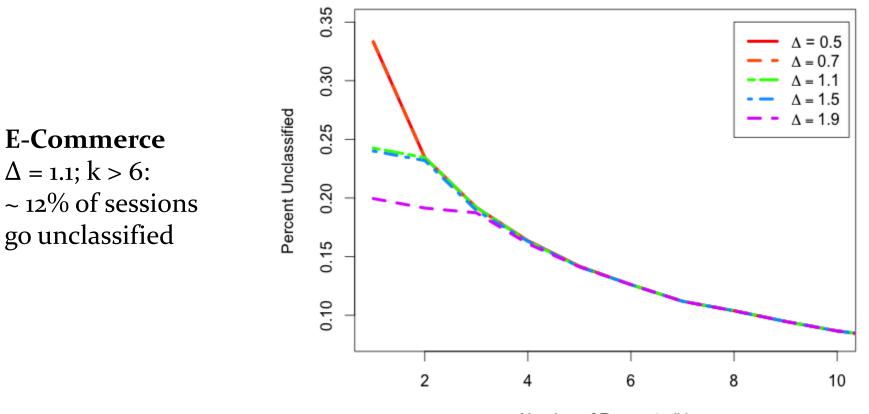


Effect of k, Δ on sessions missed



Kno.€.SIS

Effect of k, Δ on sessions missed

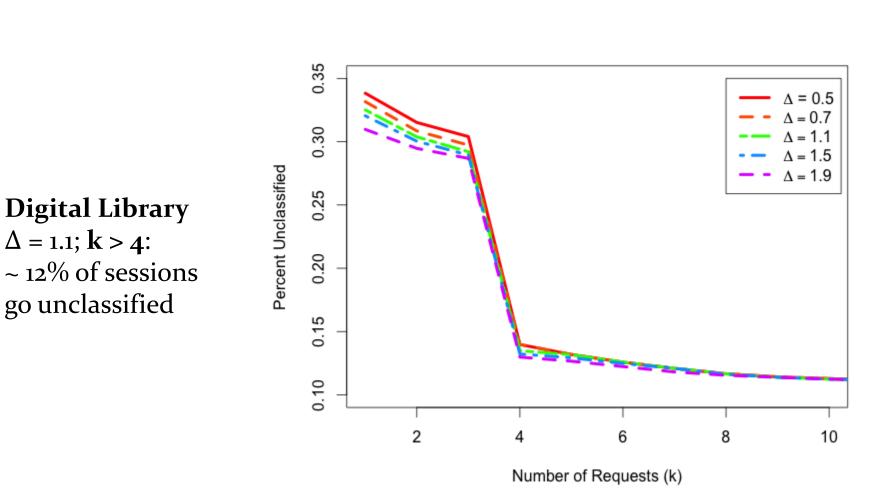


Number of Requests (k)

Ohio Center of Excellence in Knowledge-Enabled Computing

KNO.E.SIS

Effect of k, Δ on sessions missed



Ohio Center of Excellence in Knowledge-Enabled Computing

KNO.E.SIS

Real-time detection performance

5

0.80

0.70

0.60

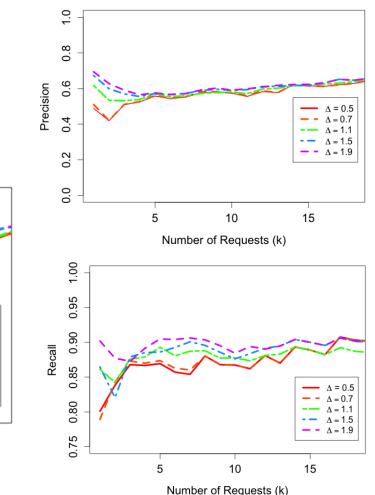
0.50

μ

- Good results (F1 > 0.7 at k > 10)
- False positive rate pulls down F1
- FP rate improves with larger requests processed

10

Number of Requests (k)



Ohio Center of Excellence in Knowledge-Enabled Computing 22

 $\Delta = 0.5$

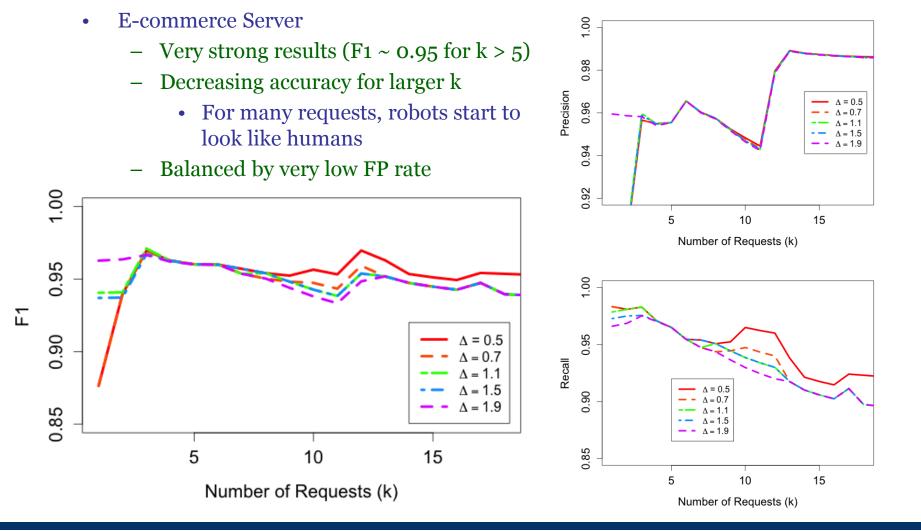
= 0.7

= 1.1

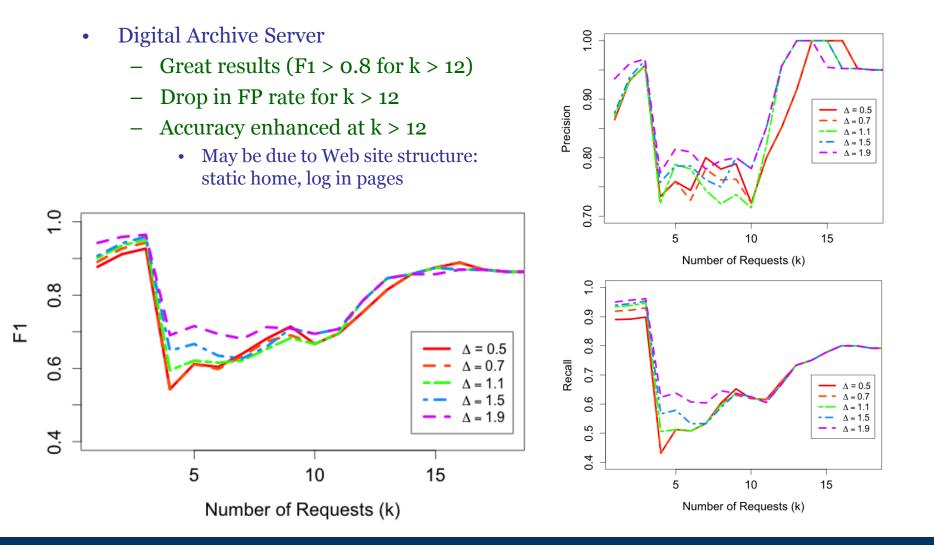
 $\Delta = 1.5$ $\Delta = 1.9$

15

Real-time detection performance



Real-time detection performance



Robot detection

- Summary
 - Offline detection
 - Across a variety of distinct datasets, strong performance (Approx. F1 > 0.9; ~ 0.73 for Academic Web server)
 - Improvement over state-of-the-art
 - Real-time detection
 - Very strong real-time capability, depending on domain (F1 > 0.75; ~ 0.95 for E-commerce)
 - Decision can be made within a small number of requests (k > 12)
 - Despite strict settings of Δ , low percentage of sessions go unclassified
 - Variation in results across web server domains!
 - Interactions between site structure or content? Can this be incorporated in a resource request pattern model?

Outline

- Introduction and motivation
- Analysis of Web robot traffic:
 - Robot detection
 - Performance Optimization: Predictive Caching
- Future research

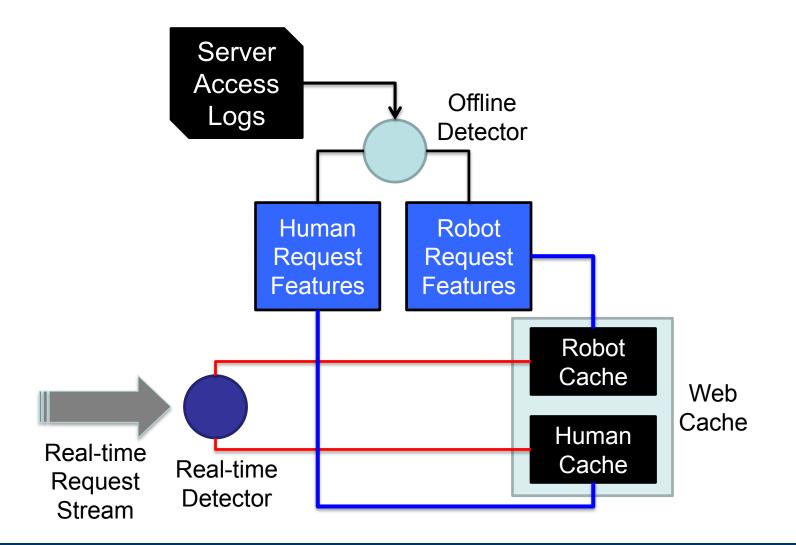
Web Caching

- Web server / cluster *caching* is a primary means to provide low latency, reduce network bottlenecks
- Caches store some resources in a smaller, faster, more expensive level of memory (RAM or controller vs. HDD)
- Very limited size, but very fast access
 - Cache hit:
 - Low-latency response
 - Cache miss:
 - High-latency response due to disk I/O; increases cluster bandwidth; ages Web server
- Caching *polices* dictate how and when resources are loaded into a cache

Web caching polices

- Numerous polices exist, built around simple heuristics:
 - Least-recently-used (LRU): keep resources recently accessed in the cache [repeated requests]
 - Log-size: Store as many resources as we can
 - Popularity: Keep frequently requested resources
- Can we service robot requests with such rules? Robots...
 - Do not send repeated requests for same resource
 - May specifically target resources of a given size
 - Could favor different resources compared to humans
- Different behaviors \rightarrow <u>Handle with separate caches</u>
 - Leverage our offline and real-time detector

Proposed Caching Architecture

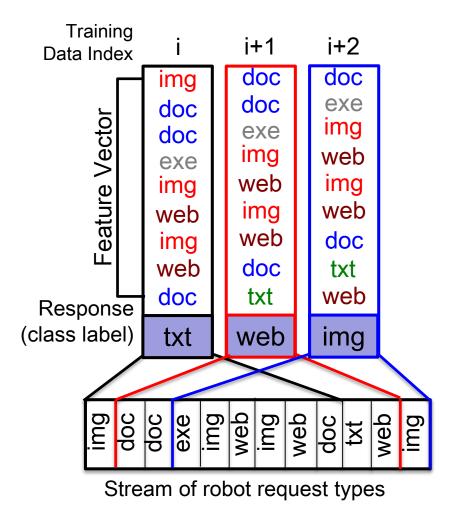


Predictive robot caching policy

- Intuition:
 - Detection demonstrated that the *type* of the next robot request is predictable
 - Resource-based classification finds robots to favor a small number of resource types, captured in request sequences
 - Characterizing robot resource popularity: power-law distribution
- Idea:
 - Extract sequences of request types from robot sessions
 - Predict *type* of the next resource
 - Select resources to admit into cache based on frequency of requests within predicted type

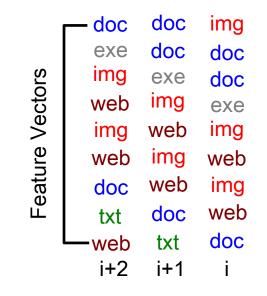
Learning request sequences

- Request sequence: types of last *n* consecutive requests made in a robot session
- Prediction task: given the <u>order</u> and <u>types</u> of last n-1 requests, predict type of *n*th request

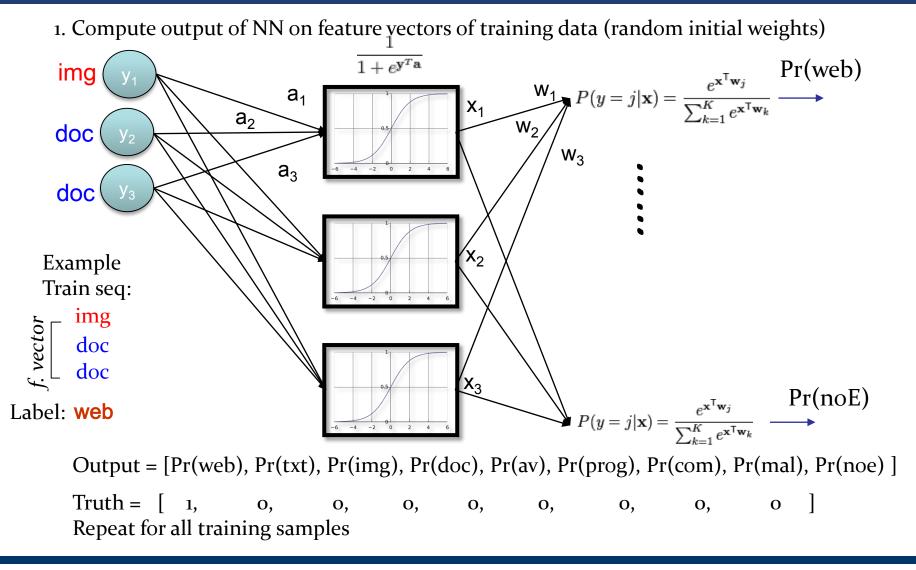


Choosing a classifier

- NN, SVN, Mult. Log-regression:
 - Only learns *features* of a request sequence
 (*i* has 3 doc, 2 web, 3 img, 1 exe; 2 img-web subsequence)
 - Does not correlate features across training data
- Nth-order Markov based models:
 - Learns ordering of sequences
 (*i has img* in pos. 1, *i*+1 has doc in pos. 1)
 - High-order needed to capture rich features
- *Elman Neural Network* learns using both features and ordering
 - Learns sequence features like a NN
 - Uses layer of *context* nodes that integrates previously seen sequences throughout training process



Neural network training



Ohio Center of Excellence in Knowledge-Enabled Computing

34

• Define an error function that measures difference from Truth to Output $J(w) = -\sum_{i=1}^{n} \sum_{k=1}^{c} t_{ik} \ln(z_{ik})$

t_{ik}: target output of training sample *i* at index *k*z_{ik}: predicted output of training sample *i* at index *k*w: network weights learned through training

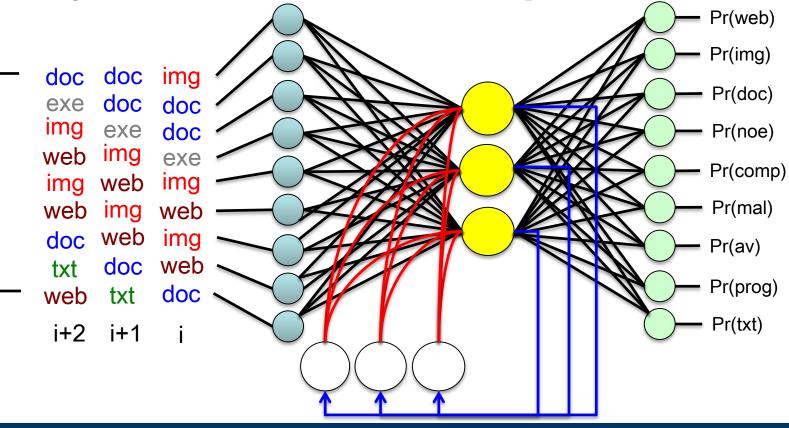
- Minimize J w.r.t. each weight w by simultaneously minimizing all partial derivatives ∂J/∂w
 - Use stochastic gradient descent to approximate computationally
- Run network with new weights w, compute new J, re-optimize w...
 - Repeat until convergence: $|J(w_{i-1}) J(w_i)| < \delta$

Elman neural network training

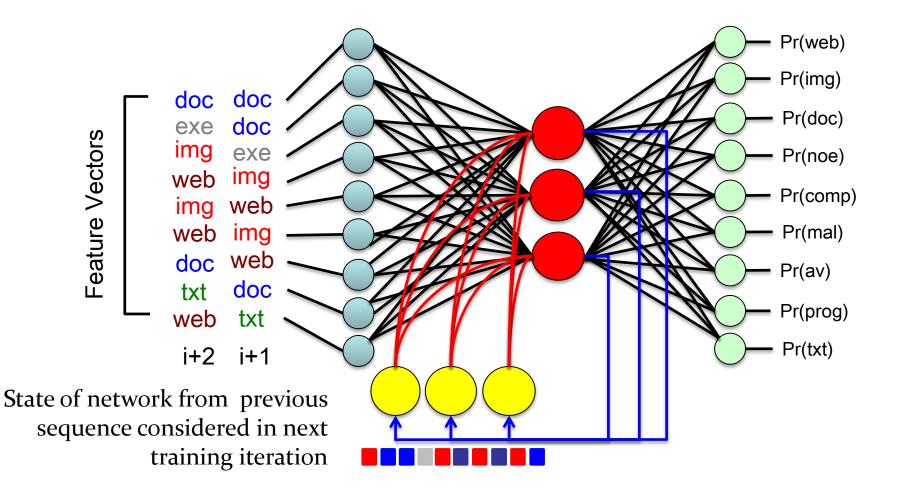
- Elman NN Twist: hidden units save state to context units
- Weight from hidden to context = 1

Feature Vectors

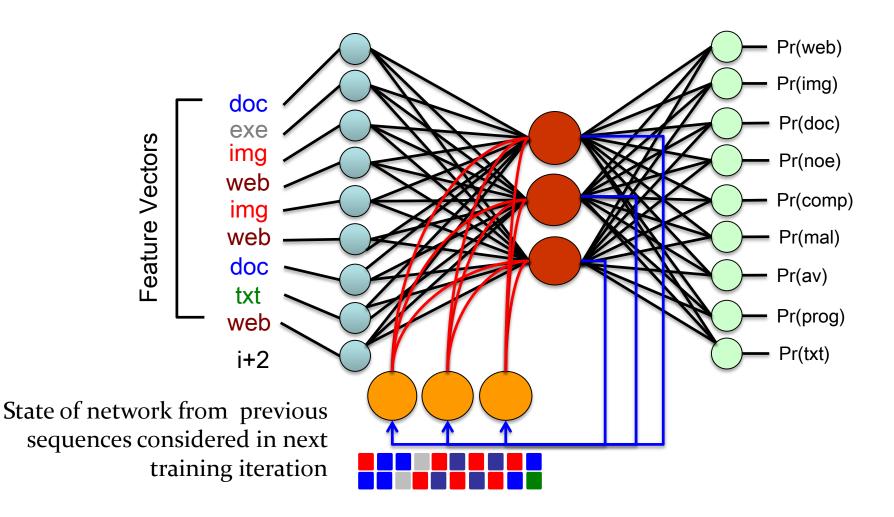
• Weights from context to hidden: additional parameters



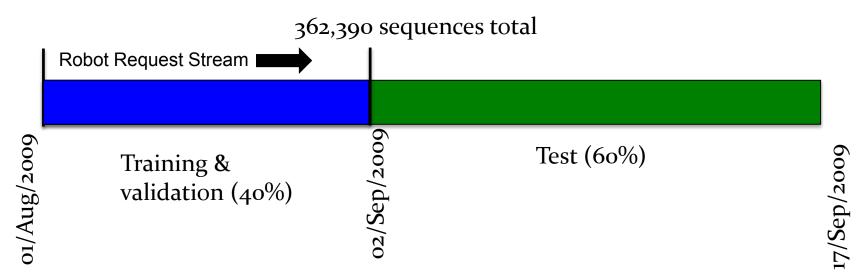
Elman neural network training



Elman neural network training



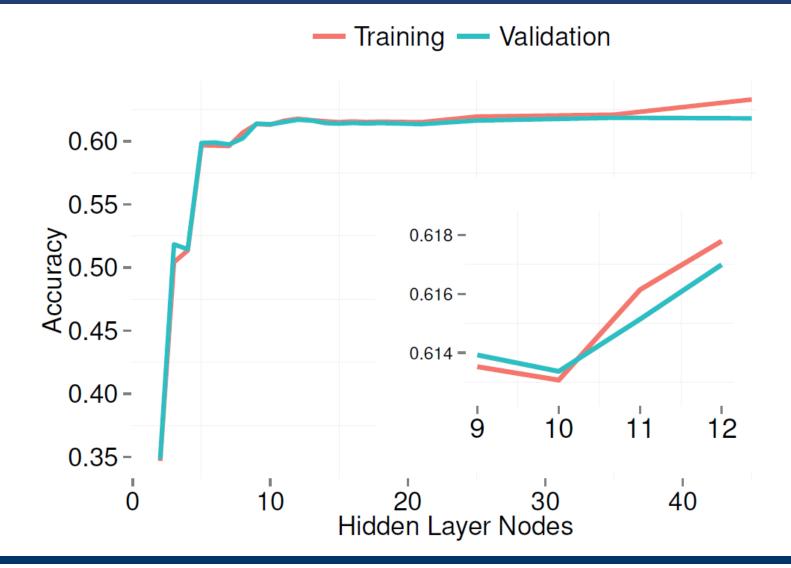
Network training and validation



D.E.SIS

- Sequences of size k=10
- First 40% of requests used to find best # of hidden units for ENN
 10-fold cross-validation
- Evaluate ENN prediction accuracy on rest of data; compare results against many other multinomial predictors

Fitting neural network size



Ohio Center of Excellence in Knowledge-Enabled Computing 40

Comparison of classifiers

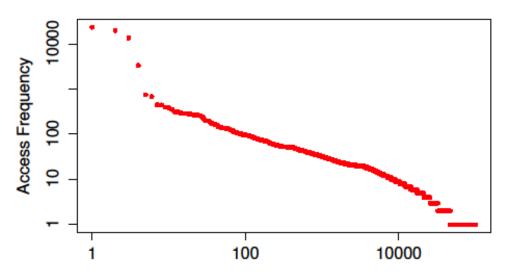
- We compare the classification accuracy of ENN against other typical multinomial classifiers
 - DTMC (learning only by sequence order):
 - Multinomial Logistic Regression (learning only features):
 - Random guess (Correct 1/9 times)

Model	Accuracy	Gain-RG	Gain-MLR	Gain-DTMC
RG	0.111	-	-	-
MLR	0.338	67.16%	-	-
DTMC	0.392	71.68%	16.0%	-
ENN	0.647	82.84%	47.8%	39.4%

• Order in request sequences may be a stronger predictor compared to features

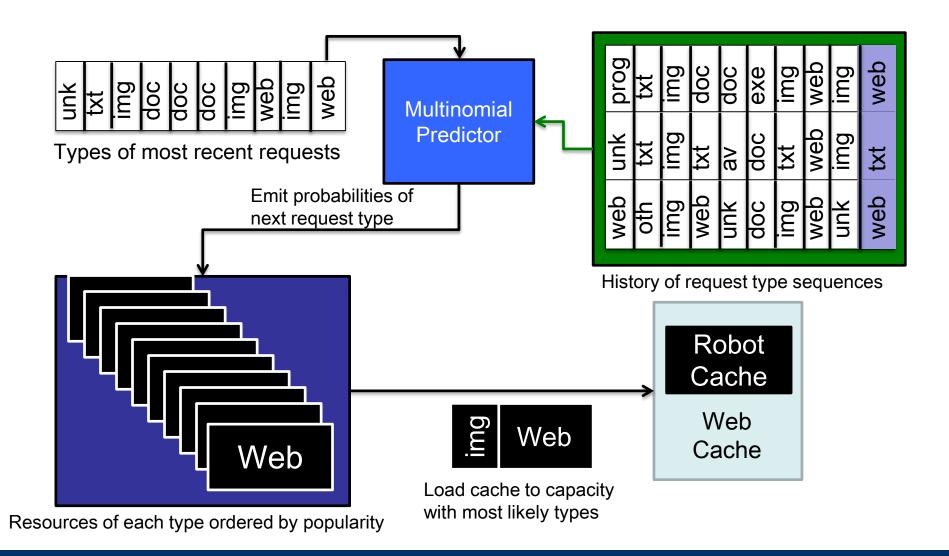
Robot caching policy

- After predicting request type, admit the most frequently requested resources *within that type* into the cache
 - *Power-law* popularity in robot requests: most frequently requested resources are fetched much more often than others
 - If all resources of a type fit in cache, load popular resources of the 2nd most likely type
 - Repeat until cache is at capacity



42

Robot caching policy



Caching Performance

- Compared performance (hit-ratio) of our predictive policy over robot traffic versus suite of baseline polices
 - Log-size: Store smallest resources; maximize # of resources in cache
 - LRU: Store most recently requested resources, evicting oldest resources
 - Popularity: Evict resources requested least frequently
 - Hyper-G: Evict resources requested least frequently, break ties using LRU
- Popularity-based caches generally used in practice

Policy	1MB	2MB	3MB	4MB	5MB	8MB	12MB	20MB	40MB
Log-size	.055	.056	.057	.057	.057	.058	.058	.059	.059
LRU	.111	.126	.136	.141	.145	.153	.159	.165	.175
Hyper-G	.174	.178	.172	.180	.176	.188	.189	.212	.236
Рор	.192	.204	.206	.205	.205	.205	.223	.224	.282
ENN	.185	.199	.212	.220	.228	.258	.284	·335	•425
ENN-Gain	-3.4%	-2.5%	3.78%	6.82%	10.1%	20.5%	21.5%	33.1%	33.6%

- Note that improvement in hit-ratio grows just logarithmically with cache size
 - Small % improvement → equivalent to using a worse policy with an exponentially (cost-prohibitive) larger cache
- ENN performance grows even stronger with larger cache size

Outline

- Introduction and motivation
- Analysis of Web robot traffic:
 - Robot detection
 - Performance Optimization: Predictive Caching
- Future research

Future Research

- Automated robot classification
 - Taxonomy of robot times for finer-grained detection
- Workload generation
 - Methods that generate representative streams of intertwined robot and human traffic
- Predictive caching
 - Extension of preliminary results
 - Implementation of real caching algorithm

Very exciting work going on here!

Thank you for your attention!

Questions?