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Introduction and motivation 

• Web robots are critical to many functions and 
services:
– Internet Search
– E-Business (shopbots)
– Private, Proprietary Systems

• Latest reports (Dec. 2013): over 60% of Web traffic! 
http://www.incapsula.com/blog/bot-traffic-report-
2013.html
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Introduction and motivation

• Within the past 5 years: fundamental shifts in how the Web is used to 
communicate and share information
– Dynamic vs. static pages
– Users produce vs. consume information
– Subscriptions vs. searching

• Now, data on the Web has never been more valuable
– 25% of search results for the largest commercial brands are for user-

generated content
– 34% of bloggers post opinions about brands
– 78% of users trust peer recommendations over ads
– 80% of organizations incorporate social network data in recruitment 

practices 
• Organizations seek to leverage this valuable, dynamic, time-sensitive data, 

to stay relevant
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A New Web Economy…
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Introduction and motivation

• The volume and intensity of robot traffic will further grow over time! 
• Web servers optimized only to service human traffic with very high 

performance
– Workload generation
– Predictive and proxy caching
– Optimal queuing, scheduling

• Unprepared to handle robot traffic - current knowledge of Web traffic may 
not transcend to robots!

• Objective: To perform a comprehensive analysis of Web robot traffic, and 
to prepare Web servers to handle robot requests with high performance
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Robot detection

• Deficiency in state-of-the-art: focuses on finding commonalities across 
robot sessions
– Behavior changes over time, and from robot to robot

• Requirements for more accurate and reliable detection 
– Find distinctions between robots and humans rather than 

commonalities between robots
– Root detection on a fundamental difference between human and robot 

behavior
• No matter how robots evolve, this difference remains

– Analytical, self-updateable model
• As behaviors change over time, so does the detection algorithm
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Robot detection

• Fundamental difference: Session request pattern:
– The order in which resources are requested during a session

• Properties of human session request pattern:
– Governed by a Web browser
– Associated with site structure
– Target specific resources

• Properties of robot session request pattern:
– No governing interface
– Requests any resources, at any time
– May target very specific resources depending on functionality
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Session request pattern

• Request patterns must be generic enough to characterize many different 
sessions in a similar way

• Partition resources into various classes
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Class Extensions

text txt,xml,sty,tex,cpp,java

web html,asp,jsp,php,cgi,js

img png,tiff,jpg,ico,raw

doc xls,doc,ppt,pdf,ps,dvi

av avi,mp3,wmv,mpg

prog exe,dll,dat,msi,jar

compressed zip,rar,gzip,tar,gz,7z

malformed Req. strings not well-formed

no extension Request for dir. Contents
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Detection Algorithm

• Encode session request patterns of robots and humans into two different 
discrete time Markov Chains (DTMCs) R = (sr, Pr) and H = R = (sr, Pr)
– Parameters estimated from logs

• Detection algorithm
– For an unlabeled session

𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛

Compute probability R or H generates x:
log(𝑃𝑟 𝑥 𝑠𝑟, 𝑃𝑟 ) = log 𝑥𝑟1 +  𝑖=2:𝑛 log 𝑃𝑟 𝑥𝑖−1,𝑥𝑖

Label x as a robot if Pr 𝑥 𝑠𝑟, 𝑃𝑟 > Pr(𝑥 |𝑠ℎ, 𝑃ℎ)
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Datasets

• We consider data from one-year access logs over a variety of servers:
– Academic: University school of Engineering
– E-commerce: Univ. of Connecticut University bookstore
– Digital Archive: Online database of United States Public Opinion Information 

• Millions of access logs across each Web server
• Using a heuristic approach, divided the logs into robot and human requests
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Test Set Date Robots Human

Academic Mar 2011 4322 6121

Digital 
Archive

Dec 2009 3752 1178

E-commerce Aug 2008 1419 556
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DTMC Comparison (Behavior Fingerprints)

Academic Digital Archive E-Commerce

R

H
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Offline detection

• Performance evaluated using precision, recall and F1
– Precision: true pos. count / true pos. + false pos. count
– Recall: true pos. count / true pos. + false neg. count 
– F1: harmonic mean of precision, recall
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Comparative Analysis

• Versus state-of-the-art results using various supervised learners
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Real-time detection

• Offline detection is an `after-the-fact’ analysis
– Great for log processing; statistical analysis
– “Damage survey” 

• Real-time detection catches robots in the act
– Differentiable treatment of robots and humans
– Control and handle crawling activities 
– “Damage control”

• State-of-the-art methods offer an engineered solution
– Painful for the users (CAPTCHA)
– Complex server-side systems target specific classes of robot traffic
– Difficult to implement and maintain in practice
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Real-time detection

• We can adopt our offline algorithm to run in real-time:
1. For every active session s, maintain Pr(s | R); Pr(s | H)
2. On new request, update Pr(s|R), Pr(s|H). 
3. If number of requests is > k and the difference in log-probabilities 

exceeds a threshold Δ, classify.

Parameter functions:
– k – give Pr(s|R), Pr(s|H) chance to stabilize 
– Δ – tune tradeoff between reliability and need to classify

• Low Δ: We classify more sessions, but may be less accurate
• High Δ: Very confident classifications, but sessions may go 

unlabeled
– Choice of Δ depends on the Web server
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Choices of Δ

18

0.5 < Δ < 2 
offers broad 
degrees of 
confidence 
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Effect of k, Δ on sessions missed
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Academic
Δ = 1.5; k > 6: 
~ 20% of sessions 
go unclassified 

Note: Δ = 1.5 is very broad
Ex: if Pr(s|R) = 0.7, we 
require Pr(s|H) < 0.173 
before the log-probability 
difference exceeds Δ
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Effect of k, Δ on sessions missed
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E-Commerce
Δ = 1.1; k > 6: 
~ 12% of sessions 
go unclassified 
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Effect of k, Δ on sessions missed
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Digital Library
Δ = 1.1; k > 4: 
~ 12% of sessions 
go unclassified 
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Real-time detection performance

• Academic Server
– Good results (F1 > 0.7 at k > 10)
– False positive rate pulls down F1
– FP rate improves with larger requests

processed
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Real-time detection performance

• E-commerce Server
– Very strong results (F1 ~ 0.95 for k > 5)
– Decreasing accuracy for larger k

• For many requests, robots start to 
look like humans

– Balanced by very low FP rate
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Real-time detection performance

• Digital Archive Server
– Great results (F1 > 0.8 for k > 12)
– Drop in FP rate for k > 12
– Accuracy enhanced at k > 12

• May be due to Web site structure:
static home, log in pages
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Robot detection

• Summary
– Offline detection

• Across a variety of distinct datasets, strong performance 
(Approx. F1 > 0.9; ~ 0.73 for Academic Web server)

• Improvement over state-of-the-art
– Real-time detection

• Very strong real-time capability, depending on domain
(F1 > 0.75; ~ 0.95 for E-commerce)

• Decision can be made within a small number of requests (k > 12) 
• Despite strict settings of Δ, low percentage of sessions go 

unclassified 
– Variation in results across web server domains!

• Interactions between site structure or content? Can this be 
incorporated in a resource request pattern model?
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Web Caching

• Web server / cluster caching is a primary means to provide low latency, 
reduce network bottlenecks

• Caches store some resources in a smaller, faster, more expensive level of 
memory (RAM or controller vs. HDD)

• Very limited size, but very fast access
– Cache hit: 

• Low-latency response 
– Cache miss:

• High-latency response due to disk I/O; increases cluster 
bandwidth; ages Web server

• Caching polices dictate how and when resources are loaded into a cache

27



Ohio Center of Excellence in Knowledge-Enabled Computing

Web caching polices

• Numerous polices exist, built around simple heuristics: 
– Least-recently-used (LRU): keep resources recently accessed in the 

cache [repeated requests]
– Log-size: Store as many resources as we can
– Popularity: Keep frequently requested resources

• Can we service robot requests with such rules? Robots… 
– Do not send repeated requests for same resource
– May specifically target resources of a given size
– Could favor different resources compared to humans 

• Different behaviors Æ Handle with separate caches
– Leverage our offline and real-time detector
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Proposed Caching Architecture
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Predictive robot caching policy

• Intuition: 
– Detection demonstrated that the type of the next robot request is 

predictable 
– Resource-based classification finds robots to favor a small number of 

resource types, captured in request sequences
– Characterizing robot resource popularity: power-law distribution

• Idea: 
– Extract sequences of request types from robot sessions
– Predict type of the next resource
– Select resources to admit into cache based on frequency of requests 

within predicted type

30



Ohio Center of Excellence in Knowledge-Enabled Computing

Learning request sequences

• Request sequence: types of 
last n consecutive requests 
made in a robot session

• Prediction task: given the 
order and types of last n-1 
requests, predict type of nth 
request
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Choosing a classifier

• NN, SVN, Mult. Log-regression: 
– Only learns features of a request sequence 

(i has 3 doc, 2 web, 3 img, 1 exe; 2 img-web subsequence)
– Does not correlate features across training data

• Nth-order Markov based models: 
– Learns ordering of sequences

(i has img in pos. 1, i+1 has doc in pos. 1)
– High-order needed to capture rich features

• Elman Neural Network learns using both 
features and ordering 
– Learns sequence features like a NN
– Uses layer of context nodes that

integrates previously seen sequences
throughout training process
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Neural network training
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Neural network training
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• Define an error function that measures difference from Truth to Output

𝐽 𝑤 = − 𝑖=1𝑛  𝑘=1𝑐 𝑡𝑖𝑘 ln 𝑧𝑖𝑘

𝑡𝑖𝑘: target output of training sample i at index k
𝑧𝑖𝑘: predicted output of training sample i at index k      
w: network weights learned through training

• Minimize J w.r.t. each weight w by simultaneously minimizing all partial 
derivatives 𝜕𝐽/𝜕w
– Use stochastic gradient descent to approximate computationally

• Run network with new weights w, compute new J, re-optimize w… 
– Repeat until convergence: 𝐽 𝑤𝑖−1 − 𝐽 𝑤𝑖 < δ
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Elman neural network training
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• Weights from context to hidden: additional parameters 
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Elman neural network training
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Elman neural network training
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Network training and validation

• Sequences of size k=10
• First 40% of requests used to find best # of hidden units for ENN

– 10-fold cross-validation  
• Evaluate ENN prediction accuracy on rest of data; compare 

results against many other multinomial predictors
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Fitting neural network size
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Comparison of classifiers 

• We compare the classification accuracy of ENN against other typical 
multinomial classifiers 
– DTMC (learning only by sequence order):
– Multinomial Logistic Regression (learning only features):
– Random guess (Correct 1/9 times)

• Order in request sequences may be a stronger predictor compared to 
features
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Model Accuracy Gain-RG Gain-MLR Gain-DTMC
RG 0.111 - - -

MLR 0.338 67.16% - -
DTMC 0.392 71.68% 16.0% -
ENN 0.647 82.84% 47.8% 39.4%
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Robot caching policy

• After predicting request type, admit the most frequently requested 
resources within that type into the cache
– Power-law popularity in robot requests: most frequently requested 

resources are fetched much more often than others
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� If all resources of a type fit in 
cache, load popular resources 
of the 2nd most likely type

� Repeat until cache is at 
capacity
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Robot caching policy
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Caching Performance

• Compared performance (hit-ratio) of our predictive policy over robot 
traffic versus suite of baseline polices

– Log-size: Store smallest resources; maximize # of resources in cache
– LRU: Store most recently requested resources, evicting oldest 

resources
– Popularity: Evict resources requested least frequently
– Hyper-G: Evict resources requested least frequently, break ties using 

LRU

• Popularity-based caches generally used in practice
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Caching Performance

• Note that improvement in hit-ratio grows just logarithmically with 
cache size
– Small % improvement Æ equivalent to using a worse policy 

with an exponentially (cost-prohibitive) larger cache
• ENN performance grows even stronger with larger cache size
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Policy 1MB 2MB 3MB 4MB 5MB 8MB 12MB 20MB 40MB

Log-size .055 .056 .057 .057 .057 .058 .058 .059 .059

LRU .111 .126 .136 .141 .145 .153 .159 .165 .175

Hyper-G .174 .178 .172 .180 .176 .188 .189 .212 .236

Pop .192 .204 .206 .205 .205 .205 .223 .224 .282

ENN .185 .199 .212 .220 .228 .258 .284 .335 .425

ENN-Gain -3.4% -2.5% 3.78% 6.82% 10.1% 20.5% 21.5% 33.1% 33.6%
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Future Research

• Automated robot classification
– Taxonomy of robot times for finer-grained detection

• Workload generation
– Methods that generate representative streams of intertwined robot and 

human traffic
• Predictive caching

– Extension of preliminary results
– Implementation of real caching algorithm

Very exciting work going on here! 
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Thank you for your attention!

Questions?


