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Károly Bósa1 Klaus-Dieter Schewe1,2

1Christian Doppler Laboratory for Client-Centric Cloud Computing
Johannes-Kepler-University Linz, Austria

k.bosa|kd.schewe@cdcc.faw.jku.at
2 Software Competence Center Hagenberg, Austria

kd.schewe@scch.at

October 16, 2012
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The Problem

Engagement of a client in cloud computing means

To shift data and functionality to a remote location – the cloud – which is
maintained by the cloud provider

Advantages:

Easy scalability, maintenance, virtuality, etc.
Pay per use

Disadvantages:

The provider, communication and other third parties involved must be
trusted
Risks of lock-in, security/privacy breeches, unavailability, inacceptable
performance, etc.

The lack of trust (for various reasons) is the major obstacle in cloud computing

There is enough practical evidence that the risks are real
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Cloud Service Architecture

Introduce a (client-owned)“layer” between the client and the cloud to handle the critical
issues
Our model gives a formal specification of a cloud service architecture in terms of
ambient ASM:

Spatial locations, mobility and some security considerations (e.g.: accessibility of
certain resources) are described by a dynamically changing hierarchy of ambient
constructs,

Algorithmic functionalities are defined by ASM agents (which reside in various
locations in the ambient hierarchy).

Our formal model provides the following new features:

The cloud is able to adapt its services to heterogeneous client devices.

The cloud architecture makes possible interaction between users and service
owners (di↵erent from the cloud provider), such that each service owner controls
the subscriptions and usages of her services.

This is basic formal model which can be extended (e.g.: with identity and access
control managements).
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Putting Our Work into Context
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Putting Our Work into Context
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Outline of the Talk

A general and informal overview on our formal cloud model.

A summary on the theoretical background based on ambient calculus:

Ambient calculus,

Definitions of some new non-basic ambient capabilities and

An abstraction of a multi-threaded server functionality.

Our formal model of a cloud service architecture.

Example: Processing of a Particular User Request in our model.

Conclusions.
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Overview 1/5: High-Level Structure of the Model
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For representing a service instance like Servicei we adopt the formal model of
Abstract State Services (AS2s).
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2.1 Abstract State Services

• We first address the problem of service specification

• The key question is:

What is a service?

• Perusing the abundant literature on SOC we find that quite often no definition

of service is given at all

• Instead, work deals with models that are intuitively accepted being “services”,

but no attempt is made to define services in general and without reference to a

particular language (such as XML)

• We will develop the model of Abstract State Services (AS2s) by means of pos-

tulates (in analogy to the definition of sequential / parallel algorithms in the

seminal work by Y. Gurevich)
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Initial Considerations

• Services have to deal with data, so it is no harm to consider first databases

• In particular, concentrate on the conceptual layer describing a database schema

in an abstract way, and an external layer made out of views

• We complete this architecture by adding operations on both the conceptual and

the external layer

• The former ones are handled as database transactions; the latter ones provide

the means with which users can interact with a database

• This will lead us to a database postulate and an extended view postulate
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The Database Layer

• Consider each database computation as a sequence of abstract states

• Each state represents the database at a certain point in time plus maybe ad-

ditional data that is necessary for the computation, e.g. transaction tables, log

files, etc.

• In order to capture the semantics of transactions we distinguish between a wide-

step transition relation and small step transition relations

• A transition in the former one marks the execution of a transaction, so the

wide-step transition relation defines infinite sequences of transactions

• Without loss of generality we can assume a serial execution, while of course

interleaving is used for the implementation.

• Each transaction itself corresponds to a finite sequence of states resulting from

the small step transition relation, which should then be subject to the postulates

for database transformations
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The Database Postulate

Postulate 1 (database postulate). A database system DBS consists

of a set S of states, together with a subset I ↵ S of initial states, a wide-step

transition relation  ↵ S ⇤ S, and a set T of transactions, each of which is

associated with a small-step transition relation  t ↵ S ⇤ S (t ✓ T ) satisfying

the postulates of a database transformation over S.

• Write DBS = (S, I,  , { t | t ✓ T })

• A run of a database system DBS is an infinite sequence S0, S1, . . . of states

Si ✓ S starting with an initial state S0 ✓ I such that for all i ✓ N (Si, Si+1) ✓  
holds, and there is a transaction ti ✓ T with a finite run Si = S0

i , . . . , S
k
i = Si+1

such that (Sj
i , S

j+1
i ) ✓  ti holds for all j = 0, . . . , k � 1.
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Example

Let us consider a (very simplified) flight booking system:

• At its core it may use a database storing data about flights and bookings

• relation Flight with attributes flight no, departure date, departure time, ori-

gin, and destination for the available flights

• relation Seat with attributes flight no, departure date, class, and number for

the available seats per class in a flight

• relation Booking with attributes booking ref, flight no, departure date, class,

customer id for the already made bookings

• more relations to capture customer data, status of bookings, etc.

• A state of the DBS would contain an instance of the relational database schema
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Example / 2

• A booking transaction would change the state by adding further tuples to the

booking relation

• the number of seats booked for each class of each flight must not exceed the

number of available seats

• the booking transaction itself proceeds stepwise, and each step also changes

the database, i.e. the state

• a booking may be issued by a customer after receiving an answer to a query,

e.g. asking for flight itineraries from a specified origin airport to a destination

airport within a specified timeframe

• the answer to such a query would be a set of itineraries, and each itinerary

would be specified by a set of flight tuples stored in the database

• thus, the state in which the booking transaction is started should also con-

tain the set of itineraries, which is a view on top of the relational database
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The View Layer

• If views are considered as part of states of a DBS, then transactions also a�ect

them

• Views in general are expressed by queries, i.e. read-only database transformations

• Therefore, we can assume that a view on a database state Si ✓ S is given by

a finite run Sv
0 , . . . , S

v
! of some database transformation v with Sv

0 = Si and

Si ↵ Sv
!

• Here we exploit that we can write a state of a database system as a set (later)

• Extend a database system by views: let each state S ✓ S to be composed as

S = Sd ' V1 ' · · · ' Vk such that each Sd ' Vj is a view on Sd

• Then each wide-step state transition becomes a parallel composition of a trans-

action and an operation that “switches views on and o�”
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The Extended View Postulate

Postulate 2 (extended view postulate). An Abstract State Ser-
vice (AS2) consists of a database system DBS, in which each state S ✓ S is

a finite composition Sd ' V1 ' · · · ' Vk, and a finite set V of (extended) views.

Each view v ✓ V is associated with a database transformation such that for

each state S ✓ S there are views v1, . . . , vk ✓ V with finite runs Sj
0, . . . , S

j
nj

of

vj (j = 1, . . . , k), starting with Sj
0 = Sd and terminating with Sj

nj
= Sd ' Vj.

Each view v ✓ V is further associated with a finite set Ov of (service) operations

o1, . . . , on such that for each i ✓ {1, . . . , n} and each S ✓ S there is a unique

state S⌘ ✓ S with (S, S⌘) ✓  .

Furthermore, if S = Sd'V1'· · ·'Vk with Vi defined by vi and o is an operation

associated with vk, then S⌘ = S⌘d ' V ⌘
1 ' · · · ' V ⌘

m with m � k � 1, and V ⌘
i for

1 � i � k � 1 is still defined by vi.
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Notes on AS2s

• In an AS2 we have view-extended database states, and each service operation

associated with a view induces a transaction on the database, and may change

or delete the view it is associated with, and activate other views

• Therefore, talk of views that are open and those that are closed

• The service operations and the view generating queries are actually what is ex-

ported from the database system

• what is exported can be very limited such as simple aggregation functions, in

which case most of the data in the database would be hidden
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Notes on AS2s / 2

• the other extreme would be to export the complete database and define oper-

ations that take a query text as input and then process the query

• both extremes (and anything between them) are supported by the definition

of AS2s

• The abstract handling of service operations that induce transactions avoids the

view update problem, which has to be taken into account when dealing with

concrete specifications for AS2s
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Example (cont.)

• The booking operation in the previous example is a service operation

• It is associated with a view that produces a list of itineraries for given search

criteria such as origin and destination, preferred class, departure time frame, etc.

• The induced transaction on the DBS updates the Booking relation

• Initial states for this database transformation can be any consistent database

plus any set of open views

• The successor state (for the wide-step transition relation  ) would contain the

updated database and the same set of views except the one containing the list of

itineraries

• The latter one could be replaced by a view that simply contains a confirmation

message for the selected and booked itinerary
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2.3 Complete Languages for Abstract State Services

First get a variant of Abstract State Machines capturing all database transforma-

tions

An Abstract Database Transformation Machine (ADTM) M over signature ⇥
as in Postulate 4 and with a background as in Postulate 5 consists of

• a set SM of states over ⇥ satisfying the requirements in Postulate 4 and closed

under isomorphisms,

• non-empty subsets IM ↵ SM of initial states, and FM ↵ SM of final states,

both also closed under isomorphisms,

• a closed ADTM-rule rM over ⇥, and

• a binary relation  M over SM determined by rM such that we have

{Si+1 | (Si, Si+1) ✓  M} = {Si + � | � ✓ �(rM, Si)}
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ADTM Rules

The set R of ADTM-rules over a signature ⇥ = ⇥db'⇥a'{f1, . . . , f!} is defined

as follows:

• If t0, . . . , tn are terms over ⇥, and f is an n-ary function symbol in ⇥, then

f(t1, . . . , tn) := t0 is a rule r in R called assignment rule

• If � is a Boolean term and r⌘ ✓ R is an ADTM-rule, then if � then r⌘ endif
is a rule r in R called conditional rule

• If � is a Boolean term with only database variables fr(�) = {x1, . . . , xk} and

r⌘ ✓ R is an ADTM-rule, then forall x1, . . . , xk with � do r⌘ enddo is a rule

r in R called forall rule

• If r1, . . . , rn are rules in R, then also the rule r defined as par r1/ . . . /rn par
is a rule in R, called parallel rule
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ADTM Rules (cont.)

• If � is a Boolean term with only database variables fr(�) = {x1, . . . , xk} and

r⌘ ✓ R is an ADTM-rule, then choose x1, . . . , xk with � do r⌘ enddo is a

rule r in R called choice rule

• If r1, . . . , rn are rules in R, then also the rule r defined as seq r1 ; . . . ; rn seq
is a rule in R, called sequence rule

• If r⌘ ✓ R is an ADTM-rule and ⌦ is a location function that assigns location

operators ↵ to terms ⇧ with var(⇧) ↵ fr(r⌘), then let ⌦(⇧) = ↵ in r⌘ endlet
defines another ADTM-rule r ✓ R called let rule

The definition of sets of update (multi)sets �(r, S) (and �̈(r, S), resp.) is straight-

forward
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Capturing the Database Layer with ADTMs

• Adapt ADTMs to specify the database layer by

• a background class specifying additional base types, each associated with a

base domain, constructor symbols and function symbols associated with these

constructors,

• a signature comprising function symbols for the database and algorithmic parts

of states, and for the bridge functions,

• a set of initial states for the database system,

• a set of transactions, each of which will be defined by an ADTM-rule, and

• a set of auxiliary ADTM-rules
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DBS Specifications

• On these grounds the definition of database system specifications is straightfor-

ward:

• A database system specification DBSS over a background specification BS con-

sists of

• a signature ⇥ over BS fulfilling the requests of the Abstract State Postulate,

• a set I of states over ⇥ called initial states of DBSS that is closed under

isomorphisms,

• a finite set T of parameterised transactions, each of which is defined by an

ADTM rule with free variables equal to the parameters, and

• a finite set A of auxiliary rules defined in the same way as T

c⌥2009: H.Ma, K.-D. Schewe, Q. Wang Foundations of Cloud Computing 51



Capturing the View Layer with ADTMs

• On top of such specification of a database system we define the view layer by a

set of extended views. Each view is defined by

• a signature defined similarly to the signature for the underlying database sys-

tem,

• a defining query that is defined by another ADTM-rule possibly using auxiliary

ADTM-rules, and

• a set of operations that are specified similar to transactions, but in addition

include details on how to handle views.

• While such a definition captures all AS2s, it does not exploit declarative query

languages

• Therefore, in a second step we extend the language by adding “syntactic sugar”,

e.g. declarative query expressions taken from a complete fixed-point query lan-

guage (such as XIQL – not handled here)
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Extended View Specifications

• If we extend the signature by adding database function symbols and bridge func-

tions to obtain the extended signature ⇥ext = ⇥⌘
db'⇥a'{f1, . . . , fk}, the added

function symbols, i.e. ⇥⌘
db�⇥db'{fn+1, . . . , fk} define a view signature, denoted

as ⇥v.

• An ADTM-rule rv over the extended schema ⇥ext will be called a query over

⇥, i� the input database is preserved, i.e. the following two conditions must be

satisfied:

• For all state pairs (S, S⌘) produced by rv, i.e. there is a finite run S0, . . . , S! of

rv with initial state S0 = S and final state S! = S⌘ such that the restrictions

of S and S⌘ to ⇥ coincide

• For all state pairs (S1, S⌘1) and (S2, S⌘2) produced by rv such that the restric-

tions of S1 and S2 to ⇥ coincide we have S⌘1 = S⌘2

• If DBSS is a database system specification with signature ⇥, then a view v over

DBSS is defined by a view signature ⇥v over ⇥ and a defining query rv over

⇥ '⇥v
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Overview 2/5: Service Plots

oi one-o↵ usage of a single operation
oi oj . . . ok one-o↵ usage of a sequence of operations
oi + oj + . . . + ok one-o↵ usage of a choice among some operations

o⇤i multiple sequential usage of a single operation/plot
oi | oj operations/plots enumerated next to each other

separated by parallel composition may are performed

in parallel1

A plot is a high-level specification of an action scheme.

For an algebraic formalization of plots in case of AS2s it is possible to exploit
Kleene algebras with tests (KATs).

Each service operation has a unique name (for instance, in one interpretation each
service operation has the full name like serviceId.operationId).

1oi | oj is simulated with oioj + ojoi in KATs, so in fact we are interested in
interleaved services operations, when we talk of parallel plots.
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Specification of Service Operations

• Selection conditions are Boolean terms that can be evaluated on structures over

⇥v and thus define substructures

• If � is a selection condition, we permit the use of restriction terms t[�]

• A v-rule over view v with selection condition � is given by a parametrised ADTM-

rule without assignments, but with the possibility to

• use restriction terms

• open views by means of rules open(v⌘) for v⌘ ◆= v, and

• close the view v using the rule close(v)
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Specification of Service Operations / 2

• Opening a view v means to initiate the functions in the corresponding view

signature ⇥v

• Closing it can be expressed simply by letting all functions in ⇥v be totally un-

defined

• The use of restriction terms can be replaced by using conditional rules with the

term �

• An extended view over a database system specification DBSS consists of a view

v over DBSS and a set Ov of v-rules over v

• An Abstract State Service Specification (A3S)AS consists of a database system

specification DBSS and a set V of extended views over DBSS
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Overview 3/5: User Registration
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Overview 4/5: Subscription to a Service
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Adaptation rules (applied by the adaptation mechanism) may be provided by the
service provider as well (this is the current interpretation in Maria’s
implementation).
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Overview 5/5: A User Request
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Ambient Calculus Summary 1/4

The concept of ambient has the following main characteristics:

An ambient is defined as a bounded place where computation happens.

Each ambient has a name, which can be used to control access (entry, exit,
communication, etc.).

An ambient can be nested inside other ambients. Two or more ambients
with the same name may reside as sibling of each other within the same
parent.

An ambient can be moved. When an ambient moves, everything inside it
moves with it (the boundary around an ambient determines what should
move together with it).
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Ambient Calculus Summary 2/4

P,Q, R::= processes
P | Q parallel composition
n[ P ] an ambient named n with P in its body
(⌫ n)P restriction of name n within P
0 inactivity (skip process)
!P replication of P
M.P (capability) action M then P
(x).P input action (the input value is bound

to x in P)
hai async output action
M1.M2 . . . .Mk .P a path formation on actions then P

M::= capabilities
In n entry capability (to enter n)
Out n exit capability (to exit n)
Open n open capability (to dissolve n’s boundary)

Communication of (ambient) names should be rather rare, since knowing the name
of an ambient gives a lot of control over it. Instead, it should be common to
communicate restricted capabilities to controlled interactions between ambients
(from a capability the ambient name cannot be retrieved).

A reduction relation P �! Q describes the evolution of a term P into a new term
Q (and �!⇤ denotes a reflexive and transitive reduction relation).
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Ambient Calculus Summary 3/4

Replication !P denotes the unlimited replication of the process P. It is equivalent to
P | !P. There is no reduction rule for !P (the term P under ! cannot start
until it is expanded out as P | !P).

(Name) Restriction (⌫ n)P creates a new (unique) name n within a scope P. The new name
can be used to name ambients and to operate on ambients by name. The
name restriction is transparent to reduction:

P ��! Q =) (⌫ n)P ��! (⌫ n)Q

Furthermore, one must be careful with the term !(⌫ n)P, because it provides a
fresh value for each replica, so

(⌫ n)!P 6= !(⌫ n)P

Communication Primitives The input actions and the asynchronous output actions can realize
local anonymous communication within ambients, e.g.:

(x).P | hai ��! P(x/a)

where an input action captures the information a available in its local
environment and binds it to the variable x within a scope P.

c�2012: K. Bósa, K.-D. Schewe () Ambient ASM Specification of a Client-Centric Cloud Interaction Architecture 14 / 44



Ambient Calculus Summary 4/4

Entry Capability The capability action In m instructs the surrounding ambient to enter a
sibling ambient named m. If a sibling ambient m does not exist, the operation
blocks until such a sibling appears. If more than one sibling ambient called m
can be found, any of them can be chosen. The reduction rule for this action is:

n[ In m.P | Q ] | m[ R ] ��! m[ n[ P | Q ] | R ]

Exit Capability The capability action Out m instructs the surrounding ambient to exit its
parent ambient called m. If the parent is not named m, the operation blocks
until such a parent appears. The reduction rule is:

m[ n[ Out m.p | Q ] | R ] ��! n[ P | Q ] | m[ R ]

Open Capability The capability action Open n dissolves the boundary of an ambient named n
located in the same ambient as Open n. If such an ambient cannot be found
in the local environment of Open n, the operation blocks until an ambient
called n appears. The relevant rule is:

Open n.P | n[ Q ] ��! P | Q

Combining Ambient Calculus with ASMs. The simple key idea due to E. Börger is that the

processes are to be specified by ASMs
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Definitions of Non-Basic Capabilities 1/8

n Be m.P ⌘ //It di↵ers from Cardelli’s definition.
(⌫ s)(s[ Out n | m[ Open n.Out s.P ] ] | In s.In m)

n[ n Be m.P | Q ]

= (⌫ s)(n[ s[ Out n | m[ Open n.Out s.P ] ] | In s.In m | Q ] )
�!⇤ (⌫ s)(s[ m[ Open n.Out s.P ] ] | n[ In s.In m | Q ] )
�!⇤ (⌫ s)(s[ m[ Open n.Out s.P | n[ Q ] ] ] )
�!⇤ (⌫ s)(s[ m[ Out s.P | Q ] ] )
�!⇤ (⌫ s)(m[ P | Q ] | s[ ] )
⇡ m[ P | Q ]
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Definitions of Non-Basic Capabilities 2/8

See n.P ⌘
(⌫ r , s)( r [ In n.Out n.r Be s.P ] | Open s )

n[ ] | See n.P

= (⌫ r , s)( n[ ] | r [ In n.Out n.r Be s.P ] | Open s )
�!⇤ (⌫ r , s)( n[ r [ Out n.r Be s.P ] ] | Open s )
�!⇤ (⌫ r , s)( n[ ] | r [ r Be s.P ] | Open s )
�!⇤ (⌫ s)( n[ ] | s[ P ] | Open s )

�!⇤ n[ ] | P
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Definitions of Non-Basic Capabilities 3/8

m Wrap n.P ⌘
(⌫ s, r)( s[ Out n.See n.s Be m.r [ In n ] ] | In s.Open r .P )

n[ m Wrap n.P ]

= (⌫ s, r)( n[ s[ Out n.See n.s Be m.r [ In n ] ] |
In s.Open r .P ] )

�!⇤ (⌫ s, r)( s[ See n.s Be m.r [ In n ] ] | n[ In s.Open r .P ] )
�!⇤ (⌫ s, r)( s[ See n.s Be m.r [ In n ] | n[ Open r .P ] ] )
�!⇤ (⌫ s, r)( s[ s Be m.r [ In n ] | n[ Open r .P ] ] )
�!⇤ (⌫ r)( m[ r [ In n ] | n[ Open r .P ] ] )
�!⇤ (⌫ r)( m[ n[ r [ ] | Open r .P ] ] )

�!⇤ m[ n[ P ] ]
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Definitions of Non-Basic Capabilities 4/8

Allow key ⌘ Open key

n DrawInkey m.P ⌘
key [ Out n.In m.In n ] | Open m.P

m[ Q | Allow key ] | n[ n DrawInkey m.P ]

= m[ Q | Allow key ] | n[ key [ Out n.In m.In n ] |
Open m.P ]

�!⇤ m[ Q | Allow key ] | key [ In m.In n ] | n[ Open m.P ]
�!⇤ m[ Q | Allow key | key [ In n ] ] | n[ Open m.P ]
�!⇤ m[ Q | In n ] | n[ Open m.P ]
�!⇤ n[ m[ Q ] | Open m.P ]

�!⇤ n[ Q | P ]
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Definitions of Non-Basic Capabilities 5/8

n DrawInkey m ThenRelease lock.P ⌘
key [ Out n.In m.In n ] | See m.lock Wrap n.Open m.P

m[ Q | Allow key ] | n[ DrawInkey m ThenRelease lock.P ]

= m[ Q | Allow key ] | n[ key [ Out n.In m.In n ] |
See m.lock Wrap n.Open m.P ]

�!⇤ m[ Q | Allow key ] | key [ In m.In n ] |
n[ See m.lock Wrap n.Open m.P ]

�!⇤ m[ Q | Allow key | key [ In n ] ] |
n[ See m.lock Wrap n.Open m.P ]

�!⇤ m[ Q | In n ] | n[ See m.lock Wrap n.Open m.P ]
�!⇤ n[ m[ Q ] | See m.lock Wrap n.Open m.P ]
�!⇤ n[ m[ Q ] | lock Wrap n.Open m.P ]
�!⇤ lock[ n[ m[ Q ] | Open m.P ] ]

�!⇤ lock[ n[ Q | P ] ] // . . . | Open lock.R2

2The capability Open is used to encode locks. Such a lock can be released with an
ambient whose name corresponds with the target of the Open.
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Definitions of Non-Basic Capabilities 6/8

Servernkey m.P ⌘
(⌫ next)(next[ ] |

!(⌫ n)(Open next.n[
n DrawInkey m ThenRelease next.P ] ) )

k pieces of m
z }| {
m[ Q1 | Allow key ] | . . . | m[ Qk | Allow key ] | Servernkey m.P

= m[ Q1 | Allow key ] |. . . | m[ Qk | Allow key ] |
(⌫ next)(next[ ] | ! (⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) )

��!⇤ m[ Q1 | Allow key ] |. . . | m[ Qk | Allow key ] |
(⌫ next)(next[ ] | !(⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
Open next.n

unique
1 [ n

unique
1 DrawInkey m ThenRelease next.P ] )

��!⇤ m[ Q1 | Allow key ] |. . . | m[ Qk | Allow key ] |
(⌫ next)(!(⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
n
unique
1 [ n

unique
1 DrawInkey m ThenRelease next.P ] )

��!⇤

k�1 pieces of m
z }| {
m[ Q1 | Allow key ] | . . . | m[ Qk | Allow key ] |
(⌫ next)( ! (⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
next[ n

unique
1 [ Qi | P ] ] )
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Definitions of Non-Basic Capabilities 6/8 (cont.)

��!⇤

k�1 pieces of m
z }| {
m[ Q1 | Allow key ] | . . . | m[ Qk | Allow key ] |
(⌫ next)( ! (⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
next[ n

unique
1 [ Qi | P ] ] )

��!⇤ m[ Q1 | Allow key ] |. . . | m[ Qk | Allow key ] |
(⌫ next)(!(⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
Open next.n

unique
2 [ n

unique
2 DrawInkey m ThenRelease next.P ] |

next[ n
unique
1 [ Qi | P ] ] )

��!⇤ m[ Q1 | Allow key ] |. . . | m[ Qk | Allow key ] |
(⌫ next)(!(⌫ n)(Open next.n[ n DrawInkey m ThenRelease next.P ] ) |
n
unique
2 [ n

unique
2 DrawInkey m ThenRelease next.P ] |

n
unique
1 [ Qi | P ] )

��!⇤ . . .

��!⇤ Servernkey m.P | nunique1 [ Qi | P ] | . . . | nunique
k

[ Qj | P ]
| {z }
each m is captured by a replica of n
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Definitions of Non-Basic Capabilities 7/8

RNDAssignn
key m.(P1+. . .+Pr ) ⌘

(⌫ next)(next[ ] |
!(⌫ n)(Open next.n[

n DrawInkey m ThenRelease next.P1 ] ) |
...
| !(⌫ n)(Open next.n[

n DrawInkey m ThenRelease next.Pr ] ) )3

3It is very similar to the capability Servern
key m.P.
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Definitions of Non-Basic Capabilities 8/8

n Choicekey m1.P1 + . . . + mk .Pk ⌘
(⌫ trap, r , t)(

trap[ Out n.key [ Open r .Out trap.In n ] |
In m1.r [ In key .m1 Be t.Open t.P1 ] |
.
.
.
In mk .r [ In key .mk Be t.Open t.Pk ] ] |

Open t.t[ ]

m2[ Q | Allow key ] | n[ n Choicekey m1.P1 + m2.P2 ]

= (⌫ trap, r , t)( m2[ Q | Allow key ] |
n[ trap[ Out n.key [ Open r .Out trap.In n ] |

In m1.r [ In key .m1 Be t.Open t.P1 ] |
In m2.r [ In key .m2 Be t.Open t.P2 ] ] |

Open t.t[ ] ] )
��!⇤ (⌫ trap, r , t)( m2[ Q | Allow key ] |

trap[ key [ Open r .Out trap.In n ] |
In m1.r [ In key .m1 Be t.Open t.P1 ] |
In m2.r [ In key .m2 Be t.Open t.P2 ] ] |

n[ Open t.t[ ] ] )
��!⇤ (⌫ trap, r , t)( m2[ Q | Allow key |

trap[ key [ Open r .Out trap.In n ] |
In m1.r [ In key .m1 Be t.Open t.P1 ] |
r [ In key .m2 Be t.Open t.P2 ] ] ] |

n[ Open t.t[ ] ] )
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Definitions of Non-Basic Capabilities 8/8 (cont.)

��!⇤ (⌫ trap, r , t)( m2[ Q | Allow key |
trap[ key [ Open r .Out trap.In n | r [ m2 Be t.Open t.P2 ] ] |

In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] |
n[ Open t.t[ ] ] )

��!⇤ (⌫ trap, r , t)( m2[ Q | Allow key |
trap[ key [ Out trap.In n | m2 Be t.Open t.P2 ] |

In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] |
n[ Open t.t[ ] ] )

��!⇤ (⌫ trap, r , t)( m2[ Q | Allow key |
key [ In n | m2 Be t.Open t.P2 ] |
trap[ In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] |

n[ Open t.t[ ] ] )
��!⇤ (⌫ trap, r , t)( m2[ Q | In n | m2 Be t.Open t.P2 | trap[ In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] |

n[ Open t.t[ ] ] )
��!⇤ (⌫ trap, r , t)

( n[ Open t.t[ ] | t[ Q | Open t.P2 | trap[ In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] ] )
��!⇤ (⌫ trap, r , t)

( n[ t[ ] | Q | Open t.P2 | trap[ In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] )
��!⇤ (⌫ trap, r , t)

( n[ Q | P2 | trap[ In m1.r [ In key .m1 Be t.Open t.P1 ] ] ] )

⇡ n[ Q | P2 ] 4

4We assume that the bound names trap, r and t do not occur in P1,. . . , Pk .
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System Specification

curAmbProc := root[ Cloud | Client1 |. . . | Clientn ]5.

We assume that there are some standardized public ambient names, which are
known by all contributors. We distinguish the following kinds of public names:
addresses (e.g.: cloud , client1, . . . , clientn), message types (e.g.: reg(istration),
request, subs(cription), output) and parts of some common protocols (e.g.: lock,
msg , intf , access, out, o1, . . . , os , op). All other ambient names are non-public in
the model.

5The ambient called root is a special ambient which is required for the ASM
definition of ambient calculus
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User Actions

RegistrationMsg ⌘ msg [ In cloud .Allow intf .reg [
Allow cloudId .hUIDxi ] ]

SubscriptionMsg ⌘ msg [ In cloud .Allow intf .subs[
Allow cloudId .hUIDx , SIDi , paymenti ] ]

RequestMsg ⌘ msg [ In cloud .Allow intf .request[ In UIDx |
h“o00

i , clientk , cInfok , argsi i |
...
h“o00

j , clientk , cInfok , argsji ] ]
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The Cloud Service Architecture

Cloud ⌘ (⌫ k, q, rescr1,. . . rescrm)cloud [
interface |
k [ rescr1[ service1 ] |. . . | rescrl [ service1 ] |
rescrl+1[ service2 ] |. . . | rescrm[ servicen ] |
q[ !Open msg |
Servern

cloudId reg .(UID).RegMgr |
Servern

cloudId subs.(UID, SID, payment).SubsMgr |
UIDx [ userIntf ] |. . . | UIDy [ userIntf ] |
UIDowner

v [ ownerIntf ] |. . . | UIDowner
w [ ownerIntf ]

] ] ]
where

interface ⌘ !intf [ in msg .In k.In q ]
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User Access Layers

userIntf ⌘
!Allow request | !Allow newPlot | !Allow returnValue |
!(op, client, cInfo, args).Adapter(op, client, cInfo, args) |
postingOutput | plotservice1 |. . . | plotservicer

where

postingOutput ⌘
!(o, client, a).msg [ Out UIDx .Out q.Out k.
Out cloud .In client.output[ Allow UserIdx .ho, ai ] ]
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User Access Layers with Service Ownership

ownerIntf ⌘
userIntf |
RNDAssignn

access SID1.(AccessTo resrc1+. . .+AccessTo resrcl) |
...
RNDAssignn

access SIDr .(AccessTo resrcs+. . .+AccessTo resrct) |
where

AccessTo resrch ⌘
Out UIDowner

v .Out q.In resrch.n Be SIDi .Allow access
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Service Instances

servicei ⌘ (⌫ lock)(Servern
access SIDi .(

(o, client, args).lock[ Servicei (o, client, args) ] |
Open lock.(o, client, a).sendBack ) )

where

sendBack ⌘ Out resrch.In q.out[
In returnValue.Out n.ho, client, ai ]

Servicei (o, client, args) ⌘ an Abstract State Service with
ctr state : {RunningState, . . . , EndState} . . .
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ASM Agents 1/3: User Registration Agent

RegMgr = RegistrationManager(UID, userCr)
RegistrationManager(UID) ⌘
ctr state : {RunningState, EndState}
initially ctr state := RunningState

if ctr state = RunningState then

if ids(UID) = undef then

storeNewUser(UID)
let UIConstruct = getAccessLayerForUser( UID ) in
NewAmbientConstruct( UIConstruct )
ctr state := EndState

where

UIConstruct ⌘ UID[ Out n | userIntf (without plots) ]
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ASM Agents 2/3: Service Subscription Agent

SubsMgr = SubscriptionManager(UID, SID, payment )
SubscriptionManager(UID, serviceID, payment ) ⌘
ctr state : {RunningState, EndState}
initially ctr state := RunningState

if ctr state = RunningState then

if ids(UID) 6= undef then

let owner = getServiceOwner( serviceID ) ) in
let plot = getPlotFromOwner(owner , UID, SID, payment) in
NewAmbientConstruct( newPlot[ Out n.In UID | plot ] )
ctr state := EndState
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ASM Agents 3/3: Adapter Agent

Adapter(op, client, cInfo, args) ⌘
ctr state : {RunningState, EndState}
initially ctr state := RunningState

let (newOp, newArgs) = adaptToClient( cInfo, op, args ) in
NewAmbientConstruct( newOp[ Allow op.hclient, newArgsi ] )
ctr state := EndState

c�2012: K. Bósa, K.-D. Schewe () Ambient ASM Specification of a Client-Centric Cloud Interaction Architecture 34 / 44



Service Plots 1/2

slotnextoi ⌘ (⌫ n)(n[ n DrawInop oi .trigger
next
oi ] )

slotnextoi+...+oj ⌘ (⌫ n)(n[ n Choiceop oi .trigger
next
oi +. . .+oj .trigger

next
oj ] )

where

triggernextoi ⌘
(⌫ lock)((client, args).Open lock.h“o00

i

, client, argsi |
lock[ RequestFor SIDj .homecoming next ] )

RequestFor SIDj ⌘
Out UIDx .In UIDowner

v .nunique Be SIDj .Allow access

homecoming next ⌘ In UIDx .returnValue[ Open out | next ]

next denotes an ambient construct (called sequence trigger) which unlocks the
subsequent slot in a sequential plot, when homecoming returns to the user area
with the output of the current operation.

If there is no any subsequent slot, next is equal to 0 (inactivity).
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Service Plots 2/2

plotoi ⌘ slot0oi

plot(oi )⇤ ⌘ (⌫ seq)(allow seq | !seq[ slotAllowseq
oi ] )

plot(oi oj ...ok )⇤ ⌘
(⌫ seq, next)(Allow seq |
!seq[ slotAllow next

oi |
next[ slotAllow next

oj |
next[ . . .
next[ slotAllow seq

oj ] . . . ] ] ] )

plot((oi+oj )ok ol )
⇤ ⌘

(⌫ seq, next)(Allow seq |
!seq[ slotAllow next

oi+oj |
next[ slotAllow next

ok |
next[ slotAllow seq

ol ] ] ] )
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Example 1/6: Cloud Receives a Request

Cloud | RequestMsg
= (⌫ k, q, rescr1,. . . rescrm)cloud [

(2nd)
z}|{
! intf [

(3rd)
z }| {
in msg .

(5th)
z }| {
In k.In q ] |

k [ rescr1[ service1 ] |. . . | rescri [ service1 ] |
rescri+1[ service2 ] |. . . | rescrm[ servicen ] |

q[

(6th)
z }| {
! Open msg |

Servern
cloudId reg .(UID).RegMgr |

Servern
cloudId subs.(UID,SID,payment).SubsMgr |

UIDx [ userIntf ] |. . . | UIDy [ userIntf ] |
UIDowner

v [ ownerIntf ] |. . . | UIDowner
w [ ownerIntf ]

] ] ] |

msg [

(1st)
z }| {
In cloud .

(4th)
z }| {
Allow intf .request[

(7th)
z }| {
In UIDx |

h“o00
2 , client1, cInfo1, args2i |

h“o00
3 , client1, cInfo1, args3i |

h“o00
1 , client1, cInfo1, args1i ] ]
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Example 2/6: Adaptation

h“o00
2 , client1, cInfo1, args2i

h“o00
3 , client1, cInfo1, args3i

h“o00
1 , client1, cInfo1, args1i

Each operation request is processed by an instance of the agent Adapter which may replace
the given operation name with one or more other operations (let us call them adapted
operations (e.g.: oa

1 , o
a
2 and oa

3 ), according to the provided client information cInfo1 and some
internal adaptation rules (which may be unique for the user). The arguments may be
modified/converted as well. The agent Adapter provides the adapted operations for the plots
in the following format:

oa
2 [ Allow op.hclient1, argsa2 i ]

oa
3 [ Allow op.hclient1, argsa3 i ]

oa
1 [ Allow op.hclient1, argsa1 i ]

Then if a service operation (e.g.: oa
1) is allowed by any plot it will be triggered.
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Example 3/6: The Plot plot(o1o2o3)⇤ Triggers o1

��!⇤ (⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.

UIDx [

(8th)
z }| {
! Allow request | !Allow newPlot | !Allow returnValue | postingOutput |

!(op, client, cInfo, args).Adapter(op, client, cInfo, args) |

(⌫ seq, next)(

(11th)
z }| {
Allow seq |

9th
z}|{
! seq[

(10th)
z }| {
(⌫ n)(n[

(12th)
z }| {
n DrawInop o1 |

(13th)
z }| {
(client, args).

(14th)
z }| {
Open lock.h“o00

1

, client, argsi | lock[

(15th)
z }| {
RequestFor SID1.homecomingAllow next ] ] ) |

next[

(10th)
z }| {
(⌫ n)(n[ n DrawInop o2 |

(client, args).Open lock.h“o00
2

, client, argsi | lock[ RequestFor SID1.homecomingAllow next ] ] ) |

next[

(10th)
z }| {
(⌫ n)(n[ n DrawInop o3 |

(client, args).Open lock.h“o00
3

, client, argsi | lock[ RequestFor SID1.homecomingAllow seq ] ] )
] ] ] |

request[

o2[ Allow op.hclient1, args2i ] | o3[ Allow op.hclient1, args3i ] | o1[

(12th)
z }| {
Allow op.hclient1, args1i ] ] ) ] |

.

.

.
]
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Example 4/6: Scheduling the Request

The triggered o1 has the form:

n
unique
i [ h“o

1

00, client1, args1i | RequestFor SID1.homecomingAllow next ]
where

RequestFor SIDj ⌘ Out UIDx .In UIDowner
v .n

unique
i Be SIDj .Allow access

homecomingnext ⌘ In UIDx .returnValue[ Open out | next ]

��!⇤ (⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.

UIDowner
v [ userIntf |

(16th)
z }| {
RNDAssign

n
access SID1.(AccessToresrck + . . . + AccessToresrcl ) |

SID1[ h“o100, client1, args1i |

(16th)
z }| {
Allow access.homecomingAllow next ] ] |

.

.

.
]

The scheduled o1 has the form:

n
unique
j [ h“o

1

00, client1, args1i | homecomingAllow next | AccessTo resrch ]

where

AccessTo resrch ⌘ Out UIDowner
v .Out q.In resrch .n

unique
j Be SIDi .Allow access

homecomingnext ⌘ In UIDx .returnValue[ Open out | next ]
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Example 5/6: Performing the Request

��!⇤ (⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.

resrch [

(17th)
z }| {
Server

n
access SID1.(

(18th)
z }| {
(o, client, args).lock[ Service1(o, client, args) ] |

(19th)
z }| {
Open lock.(o, client, a).Out resrch .In q.out[ In returnValue.Out n.ho, client, ai ] ) |

SID1[ h“o100, client1, args1i | homecomingAllow next |

(17th)
z }| {
Allow access ] ] |

.

.

.
]

��!⇤ (⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.
resrch [ Server

n
access SID1.((o, client, args).lock[ Service1(o, client, args) ] |

Open lock.(o, client, a).Out resrch .In q.out[ In returnValue.Out n.ho, client, ai ] ) |

n
unique
f

[ homecomingAllow next |

(20th)
z }| {
Service1(RunningState)(“o1

00, client1, args1) |

(o, client, a).Out resrch .In q.out[ In returnValue.Out n
unique
f

.ho, client, ai ] ] ] |
.
.
.

]
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Example 5/6: Performing the Request (cont.)

asm��!⇤
(⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.
resrch [ Server

n
access SID1.((o, client, args).lock[ Service1(o, client, args) ] |

Open lock.(o, client, a).Out resrch .In q.out[ In returnValue.Out n.ho, client, ai ] ) |
n
unique
f

[ homecomingAllow next | Service1(EndState)———————— | h“o
1

00, client1, outcomeo1 i |
(21st)

z }| {
(o, client, a).

(22nd)
z }| {
Out resrch.In q.out[ In returnValue.Out n

unique
f

.ho, client, ai ] ] ] |
.
.
.

]
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Example 6/6: Returning the Output

��!⇤ (⌫ k, q, rescr1,. . . rescrm)cloud [

.

.

.

UIDx [ !Allow request | !Allow newPlot |

(27th)
z }| {
! Allow returnValue |

(28th)
z }| {
postingOutput |

!(op, client, cInfo, args).Adapter(op, client, cInfo, args) |
plot(o1o2o3)⇤ |

next[ n
unique

i0 [

(30th)
z }| {
n
unique

i0 DrawInop o2 |

(client, args).Open lock.h“o00
2

, client, argsi | lock[ RequestFor SID1.homecomingAllow next ] ] |
next[ n

unique

i00 [ n
unique

i00 DrawInop o3 |
(client, args).Open lock.h“o00

3

, client, argsi | lock[ RequestFor SID1.homecomingAllow seq ] ] ] ] |
o2[ Allow op.hclient1, args2i ] | o3[ Allow op.hclient1, args3i ] ] |

n
unique
f

[

(23th)
z }| {
In UIDx .returnValue[

(25th)
z }| {
Open out |

(29th)
z }| {
Allow seq

unique
i ] | out[

(24th)
z }| {
In returnValue.

(26th)
z }| {
Out n

unique
f

.h“o
1

00, client1, outcomeo1 i ] ] |

.

.

.
]
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What are Clouds?

• The common understanding of the notion of “cloud” is that it is some kind of

service pool, from which services can be extracted and used

• One of the key problems is to discover the services that are needed for a particular

application by means of a search engine

• It is crucial that the service operations including the view defining queries that are

made available through some cloud are provided with an adequate description:

• a functional description of input and output types as well as pre- and post-

conditions telling in technical terms, what the service operation will do

• a categorical description by inter-related keywords telling what the service

operation does by using common terminology of the application area

• a quality of service (QoS) description of non-functional properties such as

availability, response time, cost, etc.
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Functional Description

• A functional description alone would be insu⌅cient:

• a flight booking service operation requires an itinerary to be selected, so the

input type could be specified as {(flight no : STRING, day : DATE ,
departure : TIME , class : CHAR, price : DECIMAL)}

• the input is a finite set of tuples, each of which defines a flight number, depar-

ture day and time, the booking class and the price

• the output type could be similar with a status (confirmed, waitlisted, un-

available) added for each flight segment, i.e. we have the type {(flight no :

STRING, day : DATE , departure : TIME , class : CHAR, price :

DECIMAL, status : STRING)}
• a precondition could simply be that the selected itinerary is meaningful, i.e.

flight numbers exist for the corresponding date and time, and are compatible

• a booking service for railway tickets would require the same types, so the

functional description does not indicate exactly what kind of service is o�ered.
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Categorical and QoS Description

• For the categorical description the terminology has to be specified

• This defines an ontology in the widest sense, i.e. we have to provide definitions

of “concepts” and relationships between them, such that each o�ered service

becomes an instantiation of one or several concepts in the terminology

• In this way we adopt the fundamental idea of the “semantic web”

• The QoS description is not needed for service discovery and merely useful to

select among alternatives
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3.1 Ontologies

• Ontologies (in the widest sense) can be exploited for service description:

• a terminological knowledge layer (aka TBox in description logics) describing

concepts and roles (or relationships) among them

• this usually includes a subsumption hierarchy among concepts (and maybe

also roles), and cardinality constraints

• in addition, there is an assertional knowledge layer (aka ABox in description

logics) describing individuals

• services in a cloud constitute the ABox of an ontology, while the cloud itself

is defined by the TBox

• We have to face the usual tradeo� between expressiveness and decidability
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Description Logics

• Terminological and assertional knowledge could be defined in any logic

• instead of TBox and ABox we could use the more classical notions of schema

and instance, and exploit any kind of data model (e.g. XML)

• a query language associated with the used data model (e.g. XQuery) could

then be used to find the required services

• Description logics such as OWL or DL-Lite or more restricted (for sake of de-

cidability)
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Description Logics / 2

• Description logics use two important relationships, which due to the restrictions

become decidable:

• Subsumption is a binary relationship between concepts (denoted as C1 2 C2)

guaranteering that all instances of the subsumed concept C1 are also instances

of the subsuming concept C2

• Instantiation defines a binary relationship between instances in the ABox and

concepts in the TBox asserting that an element A of the ABox is an instance

of a concept C in the TBox

• Subsumption and instantiation together allow us to discover services that are

more expressive than needed, but can be projected to a service just as required

• Concept and role names in the TBox could be subject to similarity search by a

search engine

• the search engine could produce services that are similar (with a certainty

factor) to the ones required with respect to the categorical description, and

match the functional description
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A Sample Description Logic

• Look more closely into one particular description logic in the DL-Lite family

• For this assume that C0 and R0 represent not further specified specified sets of

basic concepts and roles, respectively

• Then concepts C and roles R are defined by the following grammar:

R = R0 | R�
0

A = C0 | ⇠ | � m.R (with m > 0)

C = A | ¬C | C1 1 C2 | C1 0 C2 | �R.C | �R.C
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Terminologies

• A terminology (or TBox) is a finite set T of assertions of the form C1 2 C2 with

concepts C1 and C2 as defined by the grammar above

• Each assertion C1 2 C2 in a terminology T is called a subsumption axiom

• The logic only permits subsumption between concepts, not between roles, though

it is possible to define more complex terminologies that also permit role subsump-

tion

• Shortcuts:

• Write C1 ⌦ C2 instead of C1 2 C2 2 C1

• ⇡ is a shortcut for ¬⇠

• � m.R is a shortcut for ¬ � m + 1.R
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Semantics

• The semantics of a terminology is defined by its models

• A structure S for a terminology T consists of

• a non-empty base set O,

• subsets S(C0) ↵ O for all basic concepts C0, and

• subsets S(R0) ↵ O ⇤O for all basic roles R0

• Extend the interpretation of basic concepts and roles and to all concepts and

roles as defined by the grammar above
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Semantics / 2

• For each concept C we define a subset S(C) ↵ O, and for each role R we define

a subset S(R) ↵ O ⇤O as follows:

S(R�
0 ) = {(y, x) | (x, y) ✓ S(R0)}

S(⇠) = O
S(� m.R) = {x ✓ O | #{y | (x, y) ✓ S(R)} � m}

S(¬C) = O � S(C)

S(C1 1 C2) = S(C1) ( S(C2)

S(C1 0 C2) = S(C1) ' S(C2)

S(�R.C) = {x ✓ O | (x, y) ✓ S(R) for some y ✓ S(C)}
S(�R.C) = {x ✓ O | (x, y) ✓ S(R) ⇣ y ✓ S(C) for all y}

• A model (or ABox) for a terminology T is a structure S, such that S(C1) ↵
S(C2) holds for all assertions C1 2 C2 in T

c⌥2009: H.Ma, K.-D. Schewe, Q. Wang Foundations of Cloud Computing 66



Example

The general part of a service ontology could be defined by a terminology as follows:

Service 2 �name.Identifier 1 � 1.name 1 �address.URL 1
�o�ered by.Provider 1 � 1.address 1 � 1.o�ered by

1 �defining.Query 1 � 1.defining 1 �o�ers.Operation

Operation 2 �associated with.Query 1 � 1.associated with

Data Service ⌦ Query 1 � 1.defining�

Functional Service ⌦ Operation 1 � 1.o�ers�

Service Operation ⌦ Data Service 0 Functional Service

Service Operation 2 �input.Type 1 � 1.input

�output.Type 1 � 1.output

Type 2 �name.Identifier 1 � 1.name 1 �format.Format
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3 Algebraic Plots on Abstract State Services

• A plot is a high-level specification of an action scheme, i.e. it specifies possible
sequences of service operations

• For an algebraic formalisation of plots in Web Information Systems (WISs) it
was possible to exploit Kleene algebras with tests (KATs)

• Then a plot is an algebraic expression that is composed out of elementary op-
erations including 0, 1, and propositional atoms, binary operators · and +, and
unary operators ⇤ and ,̄ the latter one being only applicable to propositions

The set of process expressions of an AS2 is the smallest set P
containing all elementary processes that is closed under sequential
composition ·, parallel composition k, choice +, and iteration ⇤. That
is, whenever p, q 2 P hold, then also pq, pkq, p+q and p⇤ are process
expressions in P .

The plot of an AS2 is a process expression in P .
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Plots (continued)

• For the definition of plots for AS2s the service operations give rise to elemen-

tary processes of the form

'(~x) op[~z](~y)  (~x, ~y, ~z),

in which

• op is the name of a service operation

• ~z denotes input for op selected from the view v with op 2 Opv

• ~y denotes additional input from the user

• ' and  are first-order formulae denoting pre- and postconditions, respec-
tively

• Furthermore, simple formulae �(~x) – again interpreted as tests checking their
validity – also constitute elementary processes
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Examples

• For a flight booking service we may have the following simple plot:

get itineraries[](d) select itinerary[i]() personal data[](t)
confirm flight[](y) pay flight[](c)

• The following expression represents another plot for accommodation booking:

get hotels[](d) select hotel[h]() select room[r]() personal data[](t)
confirm hotel[](y) pay accommodation[](c)

• The following expression represents another plot for conference registration:

personal data[](t) (papers[]() k discount[](d0))
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4 Mediators for Abstract State Services

• We want to capture the plot of a composed AS2, i.e. the plot of an application
yet to be constructed

• Such mediators specify service operations to be searched for to solve a problem
in a service-oriented way

• Relax the definition of a plot in such a way that service operations do not have
to come from the same AS2

• Use prefixes to indicate the corresponding AS2, so we obtain

'(~x) X : op[~z](~y)  (~x, ~y, ~z),

in which X denotes a service slot

A service mediator is a process expression with service slots.

Furthermore, each service operation is associated with input- and
output-types, pre- and postconditions, and a concept in a service
terminology.
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Example

• Specify a service mediator for a conference trip application by combining con-
ference registration, flight booking, and accommodation booking

• Replicative entry of customer data should be avoided, and confirmation of se-
lection as well as payment should be unified in single local operations

L : personal data[](t) (X : papers[]() k X : discount[](d0)
(Y : get itineraries[](d) Y : select itinerary[i]() k
Z : get hotels[](d) Z : select hotel[h]() Z : select room[r]())

L : confirm[](y) (Y : confirm flight[](y) k Z : confirm hotel[](y))
L : pay[](c) (Y : pay flight[](c) k Z : pay hotel[](c))

• The three slotsX, Y and Z refer to the three services for conference registration,
flight booking, and accommodation booking, respectively, while the slot L refers
to local operations

• For confirmation and payment the input parameters y and c are simply pushed
through to the two booking services
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5 Matching Services for Service Slots

• We need exact criteria to decide, when a service matches a service slot in a
service mediator

• For all service operations in a mediator associated with a slot X we must find
matching service operations in the same AS2

• The matching of service operations has to be based on their functional and
categorical description

• The placeholder in the mediator must be replaceable by matching service
operations

• Functionally, the input for the service operation as defined by the media-
tor must be accepted by the matching service operation, while the output
of the matching service operation must be suitable to continue with other
operations as defined by the mediator
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Matching Criteria

• So we need supertypes and subtypes of the specified input- and output-types,
respectively, in the mediator, as well as a weakening of the precondition and
a strengthening of the postcondition

• Categorically, the matching service operation must satisfy all the properties
of the concept in the terminology that is associated with the placeholder
operation

• We also have to ensure that the projection of the mediator to a particular slot
X results in a subplot of the plot of the matching AS2

A subplot of a plot p is a process expression q such that there exists
another process expression r such that p = q + r holds in the equa-
tional theory of process expressions.

The projection of a mediatorm is a process expression pX such that
pX = ⇡X(m) holds in the equational theory of process expressions,
where ⇡X(m) results from m by replacing all placeholders Y : o with
Y 6= X and all conditions that are irrelevant for X by 1.
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Matching Criteria (continued)

• Requiring that the projection of a mediator should result in a subplot of a
matching service is too simple, as the order of service operations may di↵er,
and certain service operations may be redundant

• We call such redundant service operations phantoms:

• If for a condition '(~x) appearing in a process expression p the equation
'(~x) = '(~x)op[~y](~z) holds, then op[~y](~z) is called a phantom of p

• Whenever p = q holds in the equational theory of process expressions, and
op[~y](~z) is a phantom of p with respect to condition '(~x), we may replace
'(~x) by '(~x)op[~y](~z) in q

• Each process expression resulting from such replacements is called an en-

richment of p by phantoms

• Thus, we must consider projections of enrichments by phantoms
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Matching Definition

An AS2 A matches a service slot X in a service mediator m i↵ the following two
conditions hold:

1. For each service operationX : o inm there exists a service operation op provided
by A such that

• the input-type Iop of op is a supertype of the input-type Io of o,

• the output-type Oop of op is a subtype of the output-type Oo of o,

• preo ) preop holds for the preconditions preo and preop of o and op, re-
spectively,

• postop ) posto holds for the postconditions posto and postop of o and op,
respectively, and

• the concept Co associated with o in the service terminology subsumes the
concept Cop associated with op.

2. There exists an enrichment mX of m by phantoms such that building the pro-
jection of m and replacing all service operations X : o by matching service
operations op from A results in a subplot of the plot of A.
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Example

• Look the previous service mediator we can assume that the local operation
personal data[](t) has the postcondition person(t), and this is invariant under
the service operations for itinerary and hotel selection

• We can further assume that in both booking services the service operation
personal data[](t) is a phantom for person(t)

• Thus, the mediator can enriched by phantoms, which results in:

L : personal data[](t) (X : papers[]() k X : discount[](d0)
(Y : get itineraries[](d) Y : select itinerary[i]() Y : personal data[](t) k

Z : get hotels[](d) Z : select hotel[h]() Z : select room[r]())
Z : personal data[](t)

L : confirm[](y) (Y : confirm flight[](y) k Z : confirm hotel[](y))
L : pay[](c) (Y : pay flight[](c) k Z : pay hotel[](c))

• The projection of this process expression to the services X , Y and Z, respec-
tively, results exactly in the three plots in our previous example
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Conclusions

Our model applies a new client-cloud interaction approach based on algebraic plots by
which service owners are able to fully control the usages of their services in the case of
each subscription, respectively.

One of the major questions can be whether it is adaptable to nowadays leading
cloud architectures and solutions (e.g.: Amazon S3, Microsoft Azure, IBM
SmartCloud, etc.)?

In the model both the client side and the services are still abstract and all our
novel methods either can be wrapped into a single cloud service or can be shifted
to the client side as well.

Adaptivity can be approached by defining appropriate ambients

Extensions regarding Identification, Authorisation, Authentication, Monitoring, etc. can

be seen as refinements of the generic architecture
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