The challenges of Multi-Clouds

Dana Petcu

West University of Timisoara & Institute e-Austria Timisoara

1

12/19/2013

Agenda – more concrete

Generalities

- Backgound
- Clouds and their future?
- Why Multiple Clouds?
- Taxonomy of Multiple Clouds
- Interoperability & portability

Solutions

- MOSAIC: for portability
- MODAClouds: model-driven engineering
- SPECS: security SLA management

A Step Back

From Where? And Background

University and Faculty

West University of Timisoara (www.uvt.ro/en)

- More than 20 000 students
- 11 faculties

Faculty of Mathematics and Computer Science (www.math.uvt.ro)

- More than 1000 students (undergraduate, master, PhD)
- Two departments: Maths and CS

Computer Science Department (web.info.uvt.ro)

- Around 700 students (undergraduate, master, PhD)
- Studies in Romanian and English
- Foreign students coming in Erasmus programme
- ▶ 35 teachers
- Master (English): Artificial Intelligence & Distributed Computing (www.math.uvt.ro/invatamant/cicluri/masterat/informatica/aidc)

Research Center in Computer Science (research.info.uvt.ro)

- Parallel & Distributed Computing, AI & Nature Inspired Computing
- Runs around 5 national & international R&D projects per year
- Manage the biggest supercomputing center of Romania

HPC Center

http://hpc.uvt.ro

400 cores Cluster 4000 cores BlueGene/P 3000 cores GPU cluster

Research spin-off, IeAT

Institute e-Austria Timisoara (www.ieat.ro)

- 10 years old private research institute in Computer Science
- Non-profit association between 3 public institutions (2 universities from Romania and one from Austria)
- More than 40 employees
- Funded only on projects
- R&D project obtained by national/international competitions
- Technological transfer type of contracts with industry
- PhD and master students working in R&D projects to complete their theses
- Support the R&D activities of the universities involved

Parallel & Distributed computing Group

▶ 2000-2009

. . .

- Grid computing tools and applications in symbolic computing, Earth Observation
- Services orchestrations, semantics
- Parallel computing in image processing, evolutionary computing, formal verification, symbolic computing

> 2010-2013

- Cloud computing
- Scalability in parallel computing, scheduling

Projects/2013 @ UVT & IeAT

Cloud

- EC-FP7 MODAClouds
- EC-FP7 mOSAIC
- EC-FP7 SPECS
- EC-CIP SEED
- RO-PNII AMICAS
- Grid
 - EC-FP7 EGI Inspire
- Parallel
 - EC-FP7 HOST
 - EC-FP7 HP-SEE
- Others: security, digital
 - EC-FP7 SPaCioS
 - EC-FP7 SCAPE

www.modaclouds.eu www.mosaic-cloud.eu www.specs-project.eu www.seed-project.eu amicas.hpc.uvt.ro

www.egi.eu

host.hpc.uvt.ro www.hp-see.eu

www.spacios.eu www.scape-project.eu 2012-2015 2010-2013 Sci. lead 2013-2016 2012-2014 2012-2014

2010-2014

2012-2014 Lead 2010-2013

2010-2013 2011-2014

Clouds and their future

Generalities

Cloud Computing – Definition?

Source: http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf

Clouds are <u>dynamic (resource) environment</u> that guarantee availability, reliability & related quality aspects through <u>automated</u>, elastic management of the hosted services

The automated management

- aims at optimising the overall resource utilisation
- whilst maintaining the quality constraints.

Source: http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf

User perspective

Clouds are environments Perspective which provide resources and services to the user in a <u>highly available and quality-assured fashion</u>, thereby keeping the total cost for usage & administration <u>minimal and adjusted to the actual level of consumption</u>.

The resources and services should be accessible

- for theoretically unlimited no. customers
- from different locations and
- with different devices
- with minimal effort and minimal impact on quality.

The *environment* should adhere to security and privacy regulations of the end-user, in so far as they can be met by the internet of services.

Source: http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf

Expectations in terms of use cases

Source: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-expert-group/roadmap-dec2012-vfinal.pdf

Main Topics to Address

- 1. Data Management
- 2. Communication & Network
- 3. Resource Description & Usage
- 4. Resource Management
- 5. Programmability and Usability
- 6. Federation, Interoperability Portability
- 7. Multiple Tenants
- 8. Political & Legislatory
- 9. Security
- 10. Business & Cost Models

Topics of interest vs. Gartner Report

Figure 1. Hype Cycle for Cloud Computing, 2012

12/19/2013

Why Multiple Clouds?

NIST scenarios: Multiple Clouds

Clouds can be used

- 1. serially, when moved from one Cloud to another, or
- 2. simultaneous, when using services from different Clouds.

Simple scenarios:

- 1. [serial] migration from a Private Cloud to a Public Cloud
- 2. [simultaneous] Hybrid Cloud, when some services are lying on the Private Cloud, while other services are lying on a Public Cloud

Top 10 Reasons for Multiple Clouds

- deal with the peaks in service 6.
 & resource requests using external ones, on demand 7.
 basis;
- 2. optimize costs or improve quality of services;
- 3. react to changes of the offerts of the providers;
- 4. follow the constraints, like new locations or laws;
- 5. replicate the applications or services consuming resources or services from different Cloud providers to ensure their high availability;

avoid the dependence on only one external provider;

act as intermediary;

- 9.)enhance own Cloud resource
- and service offers, based on agreements with other
 providers;
- 10. consume different services for their particularities not provided elsewhere.

Taxonomy of Multiple Clouds

Terminology

- Multi-Cloud,
- Cloud Federation,
- Inter-Cloud,
- Hybrid Cloud,
- Cloud-of-Clouds,
- Sky Computing,
- Aggregated Clouds,
- Multi-tier Clouds,

- Cross-Cloud,
- Cloud Blueprint,
- Cloud Merge,
- Fog Computing,
- Hierarchical Clouds,
- Distributed Clouds

Delivery models for Multiple Clouds

1. Federated Clouds

- assumes
 - a formal agreement between the Cloud providers
- service providers
 - are sub-contract capacity from other service providers
 - offer spare capacity to the federated group of providers.
- the consumer of the service
 - is not aware of the fact that the Cloud provider he or she pays is using the services of another Cloud provider

2. Multi-Cloud

- assumes that
 - there is no priori agreement between the Cloud providers
- > a 3rd party (even the consumer) is responsible for the services
 - contacts the service providers,
 - negotiates the terms of service consumption,
 - monitors the fulfillment of the service level agreements,
 - triggers the migration of codes, data and networking from one provider to another.

Source: http://www.buyya.com/papers/InterCloud-Brokering-Taxonomy.pdf

Scenarios for multiple Clouds

To solve in Cloud Federation

Federations

- Interoperability framework
- Integration as a service
- Match-making with available external services
- Live virtual machine migration
- Network overlay for connectivity problems
- Meta-schedulers
- Monitoring meta-system
- Intelligent management systems

Multi-Cloud

- Portability
- Resource/service selection mechanism and methodology
- Uniform APIs
- Search engines
- Automated deployment
- Service aggregator
- Governance
- •

InterCloud, Cloud Broker & Blueprint

InterCloud:

A Cloud Federation or a Multi-Cloud that includes at least one Cloud Broker and offers dynamic service provisioning

Cloud Broker

 an entity that manages the use, performance and delivery of Cloud services and intermediates the relationships between Cloud providers and Cloud consumers

Cloud Blueprint

- an enhanced Cloud delivery model,
- a reference architecture transforms Cloud stack into modular and easily combinable components that offer Integration-asa-service functionality

Requirements/ Multi-Cloud

Middleware

Delivery model Organization		Type	Architecture	Middleware examples
Federation	Horizontal	Distributed	Centralized Aggregated Peer-to-Peer	BonFIRE, ConPaaS OpenNebula OpenCirrus
		Dynamic	Sky computing	Nimbus
		-	Cross-Clouds	Xen-Blanket
	Hierarchical	Vertical Multi-tier		
Multi-Cloud	Horizontal	Library-based		jclouds, Libcloud, δ -Cloud, SimpleCloud, SAGA
		Service-based	Hosted Deployable	RightScale, Kaavo mOSAIC, Cloud4SOA, Optimis, Aoleus, MODAClouds
	Hierarchical	Hybrid Cloud	Bursted Cloud	StratusLab, Agility
		Clouds of Clouds	8	TClouds
Inter-Cloud	Governance			Enstratius
	Marketplace	Cloud brokers	SLA-based Trigerred-action	SpotCloud, Stratos, CloudBroker Scalr
		Blueprint	_	4CaaST

Interoperability and portability

Interoperability in Clouds?

Interoperability/Clouds- history

- 1. Migration targets VMs
 - Create, import, share VMs (e.g. use OVF)
- 2. Federation targets networking
 - Portable VMs moved between clouds and hypervisors without reconfiguring anything
- 3. On-demand (burst) targets APIs
 - Migration and federation on demand
 - Interoperability focused on storage and compute (e.g. CDMI, OCCI)

Interoperability definition & dimensions

POLICY:

Federate, communicate

between providers

• Dictionary:

 Property referring to the ability of diverse systems to work together

By mottos:

- avoid vendor lock-in
- develop your application once, deploy anywhere
- enable hybrid clouds
- one API to rule them all

Migration support

RUNTIME:

DESIGN: Abstract the programmatic differences

D. Petcu, Portability and Interoperability between Clouds:

Challenges and Case Study, ServiceWave 2011^{12/19/2013}

Current solutions

Levels

Levels	Techs		
	E.g.		E.g.
Business	Strategies, regulations, mode of use	Domain specific lang.	Automated translation in code
Semantic	Function calls and responses	Semantic repositories	UCI
Appl & service	Automation, configuration		Mediators, frame-
Appl & service	Standards in deployment	Abstraction layers	works (SLA@SOI)
Management	& migration Protocols for	Standards	OVF/DMTF, CDMI/SNIA
Techs & infrastr	requests/responses		
	Pre-deployment, work-loads	Open protocols	OCCI, Deltacloud
Image & data	Allocation,	Open APIs	jClouds, libcloud, OpenStack
Network	admission		

Portability in Clouds?

Portability between Clouds

- Ability to use components or systems lying on multiple hardware or software environments
- Dimensions:

Import & export functionality

SERVICE:

On the fly add, reconfig and remove resources

FUNCTION: Define appl. functionality in platform-agnostic manner

Portability at XaaS level

Preserve/enhance functionality when substitute softw Measures:

- open source; proprietary/open formats;
- integration techs; appl server/OS

Minim.appl.rewriting while preserve/ enhance control Measures:

- proprietary vs.open APIs, progr.languages,data formats
- tight vs. loose coupled services
- abstract layers for queuing & messaging

Appls and data migrate and run at a new provider *Measures:*

- ability to port VMs and data
- underlying configurations across providers
Requirements for portability

Economic models, cost-effectiveness, license flexibility, negotiated SLAs, leasing mechanisms

Data portability and exchange, scale-out, location-free, workflow management

Minimal reimplementation when move, standard APIs, same tools for cloud-based and entreprise-based appls

SLA and performance monitoring, QoS aware services, service audit, sets of benchmarks

Deploy in multiple clouds with single management tool, navigation between services, automated provisioning, resource discovery and reservation, behavior prediction

Single sign-on, digital identities, security Standards, trust mechanisms, authentication

mOSAIC

Open source Apl & Platform for Multiple Clouds

mOSAIC

marketing motto: "Flying through the Clouds"

- a tool for developing portable Cloud-applications which can consume hardware and software resources offered by multiple Cloud providers;
- 2. a brokerage system to support the decision of Cloud service provider selection at the deployment stage.
- 3. an open-source PaaS that can be easily deployable by service providers and which can be customized and enhanced by service providers;

mOSAIC as R&D collaboration effort

www.mosaic-cloud.eu

Consortium:

- 1. Second University of Naples, Italy
- 2. Institute e-Austria Timisoara, Romania
- 3. European Space Agency, France
- 4. Terradue SRL, Italy
- 5. AITIA International Informatics, Hungary
- 6. Tecnalia, Spain
- 7. Xlab, Slovenia
- 8. University of Ljubljana, Slovenia
- 9. Brno University of Technology, Czech Republic

September 2011:	1 st API implementat. (Java)
September 2012:	1 st stable PaaS,
	2 nd API impl. (Python)
March 2013:	Full software package

Scenario for multiple Clouds

Overview paper:

Petcu et al, *Experiences in Building a mOSAIC of Clouds Journal of Cloud Computing: Advances, Systems and Applications* 2013, 2:12 doi:10.1186/2192-113X-2-12, May 24, 2013

http://www.journalofcloudcomputing.com/content/2/1/12/abstract

How to use it?

Write component-based application

- Languages: Java, Python, [Erlang, Node.js]
- Communications through message passing
- Respect the event-driven style of programming
- Debug application on the desktop or on-premise server(s)
 - Within Eclipse
 - Use Personal Testbed Cluster using VirtualBox for the VMs
- Deploy application in a Cloud
 - Assisted by Cloud Agency and Broker (with SLAs) OR
 - Use Resource Allocator
- Control the application
 - Control the life-cycle of the components (start/stop/replace)

Tutorial & Documentation

•Tutorial for the installations and first example:

http://wiki.volution.ro/Mosaic/Notes/Platform/Tutorial

Documentation:

http://developers.mosaic-cloud.eu

Application videos & links

- Civil engineering (Matlab @ Cloud): <u>http://youtu.be/EztdyThs39w</u>
- Earth Observation (ESA&Terradue): <u>https://vimeo.com/64316032</u>
- Model exploration: <u>http://youtu.be/fU8VONfg6Z0</u>
- Information extraction on the open-source repository
- Sensor data in the Intelligence Maintenance use case
- Olaii (<u>www.olaii.com</u>) RightScale + Amazon

- Hello example (one Cloudlet):
 - Hello run and debug on PTC: <u>http://youtu.be/pDrktFOMZWA</u>
 - Hello run on AWS: <u>http://youtu.be/GW1WjZhJXH8</u>
- Real time feeds example
- (multiple Components & Cloudlets):
 - Deploy manually component by component in AWS: <u>http://youtu.be/uYD8sxMStz8</u>
 - Package send to S3 and start of the appl: <u>http://youtu.be/AK1LqAMjvfU</u>

Tools Videos

- Use PTC:
 - How to start the [desktop] platform: <u>http://youtu.be/TPHHXg1ggvU</u>
 - How to start application on AWS: <u>http://youtu.be/oGf2wDce-sk</u>
- Vendor selection:
 - Vendor offers: <u>http://youtu.be/T54qh0cWroY</u>
 - XCloud: <u>http://youtu.be/r3kXeBHSVF8</u>
- SLA
 - negotiation: <u>http://youtu.be/3X5Kih-Oi6E</u>
 - SLAgw & security: <u>http://youtu.be/ZKcWhl1WG14</u>
 - Usage of Cloud Agency & OpenNebula: <u>http://youtu.be/6SBGYc7fCWA</u>
 - Benchmarks
 - <u>http://developers.mosaic-</u> cloud.eu/confluence/display/MOSAIC/Benchmarks
 - Shell scripts: CPU, Network, Message queues, Data stores

MODAClouds

Model-Driven Engineering for Clouds

MODAClouds objective

provide

- methods,
- a decision support system,
- an IDE and
- a runtime environment

to support

- High-level design
- Early prototyping
- Semi-automatic code generation
- Automatic (re)deployment
- Monitoring and self-adaptation

of applications on multi-Clouds with guaranteed QoS

MODAClouds (www.modaclouds.eu)

Architecture

http://www.mo daclouds.eu /publications /publicdeliverables/

50

Software

www.modaclouds.eu/software

for:

- Docs
- Source codes
- Videos

Design-time components

- MODAClouds IDE
 - Functional Modeling Tools
 - QoS Modelling and Analysis Tools
 - 1. LINE
 - 2. Space4Cloud
- MODACloudML

Run time components

- Monitoring Platform
- Execution Platform
 - 1. Updates of mOSAIC open-source PaaS
 - 2. Cloud4SOA

Re-used components

- Modelio
- Paladio

An example

D. Ardagna et al. MODACLOUDS: A Model-Driven Approach for the Design and Execution of Applications on Multiple Clouds. Procs. MiSE 2012

12/19/2013

53

Secure Provisioning of Cloud Services based on SLA management

TUD, Germany

leAT, Romania

CSA, United Kingdom

cloud

security

alliance™

XLAB, Slovenia

EMC² EMC, Ireland

FP7-ICT-10-610795

Project Start: 1/11/2013 Project Type: STREP Duration: 30M Total Funding: 3.5 M EU Contribution: 2.4 M

SPECS aim

developing and implementing an open source framework

to offer Security-as-a-Service,

▶ by

- relying on the notion of security parameters specified in Service Level Agreements (SLA),
- providing the techniques to systematically manage their life-cycle

Framework: techniques & tools

- 1. **Negotiation** of security parameters in Cloud SLA,
 - user-centric
 - along with a trade-off evaluation process among users & CSPs,
 - in order to compose and use Cloud services fulfilling a minimum required security level
 - termed QoSec or Quality of Security in SPECS
- 2. **Monitoring** in real-time the fulfillment of SLAs
 - SLA agreed with one or more Cloud Service Provider (CSP)
 - enable notifying users &CSPs, when a SLAs not being fulfilled
 - e.g., due to a cyber-attack

3. Enforcing agreed Cloud SLA

- in order to keep a sustained QoSec that fulfills the specified security parameters
- framework reacts/adapts in real-time to fluctuations in QoSec
 - by advising/applying the correct countermeasures
 - e.g., triggering a two-factor authentication mechanism

A preview

SLAgw & security: <u>http://youtu.be/ZKcWhl1WG14</u>

Conclusions

Communities' high interest in tools/middleware

- to support the easy consumption of Clouds resources
- will continue in the next half decade

Multi-Clouds

- Challenges related to the heterogeneity of the services
- Multiple emerging solutions from research & industry

Open problems

- Standards, protocols
- Reliability, trust, security, verification
- Automated management, self-adaptivity

