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Best practice and design pattern for modern
web application building: an architectural view
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> SW developers 2

Pursuing a career as a Software Engineer

- Anyone interested?

- Thoughts, ideas, how do you think it works?

- What is software development about?

- Where, who, when, how much and why.

- How does the market look like?
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> The big challenge 3

Development

Maintenance 
and 

post-development 
implementations

Enterprise software TCO 
structure

(5yrs basis)

30%

70%

“(…)Enterprise software has gained a well-deserved 
reputation for lengthy and expensive implementations, 
followed by high ongoing costs and inflexibility(…)”

John F. Martin, Senior Vice President, Corporate & Product Strategy for 

IQNavigator, Inc.

> Gartner has estimated that up to 70% of TCO is due to 
post-implementation modifications;

> Only 10% to 30% of coding time is used to develop 
value added services and core functionalities;

> Enterprise software usually requires large upfront 
investments and a huge amount of trust;

> Ongoing benefits tends to zero (and less), due to 
increasingly maintenance, administration and update 
costs (again TCO);

> Business moves faster than software developers.

> The big challenge 4

Any idea?
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> The big challenge 5

A good place to start:

>Solid design principles and 
patterns

>(Self-)Controlled* and quality-
oriented processes

>People and spirit

* Controlled not meaning having someone on-your-back every second, but 
meaning measuring progresses and gathering feedbacks: always seek for 
improvements. In other words: you control what you measure.

> The big challenge 6

Does it really make sense?

It takes time and money to plan a proper design. It takes 
more time and more money to enforce a solid process.

How can adding more complexity help contain 
development costs?

Well, … do not focus on the short term, but look at the 

TCO.
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> SOLID: it’s not a casual word 7

>Single Responsibility
If there is more than one reason for a class to require a chance, 
this principle is violated

>Open-closed
A class should be open for extension but closed for modification

>Liskov substitution
objects in a program should be replaceable with instances of 
their subtypes without altering the correctness of that program

> Interface segregation
Many very specific interfaces are better than one generic

>Dependency inversion (by injection)
Depend on abstractions

> Single Responsability 8

SOLID_SRP.rtf
SOLID_OC.rtf
SOLID_DI.rtf
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> Altri pattern e principi 9

There is much more than SOLID principles:

- Commonly used design patterns (creational, 
structural, behavioral) 
(http://www.dofactory.com/Patterns/Patterns
.aspx)

- SoC (Separation of Concerns): layered 
designs;

- MVC (Model-View-Controller): software 
architecture which enforce SoC.

> MVC 10

- View (UI): Components which 
represent the UI

- Model: once called “business 
logic”, represents the objects 
manipulated by the applications 
and the related operations

- Controller: Handle the user 
interactions, interact with the 
model layer to 
retrieve/store/manipulate data and 
push/get data to/from the views
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> MVC: why? 11

Hey, I already know other less complicated approaches, why 
should I bother:

- Ideal approach for complex projects: makes it easier to 
manage the complexity by organizing the code into separate 
layers.

- Provide full control over the generated UI (HTML, jQuery, …)

- Not strictly enforced, but less server and more client

- Powerful routing infrastructure (front controller) and 
enhanced distributed security

- Ideal for unit testing (easy to mock)

- Ideal for mid-large teams

> TDD and mocking 12

How is quality enforced?

- Developers could do mistakes

- Testing during development is up to the developer

- Not all the possible behaviors might be foreseen 

- Edges or boundaries are sometimes tricky

- Real data can differ from test data

- User behaviors are unpredictable

- Null parameters

- …
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> TDD and mocking 13

As seen at the beginning an application costs because of its 
maintenance, meaning that since developers have to chase 
bugs around and solve them, it cost a lot of money.

Wouldn’t it be nice if at the end of 
development the application was 
already tested?

> TDD and mocking 14



5/14/2013

CopyRight 2007 - Base16 srl 8

> TDD and mocking 15

So, basically with TDD a development team

- Write only the minimum required code to pass a set of tests

- Tests are written in advance, before code

- Development in carried out in iterations (Agile, we’ll get there 
in a while)

But, to do that:

- Tests must be executable automatically in a test 
environment

- Tests must not rely on a full infrastructure (web server, Db, 
…)

> TDD and mocking 16

How can I not rely on the infrastructure: if it’s a web application 
I will need a web server to test it, right? … No

This is where mocking come at hand: mock objects can 
reproduce the behavior of real object without relying on the 
infrastructure.

Let’s see how it works:

http://msdn.microsoft.com/en-
us/library/ff847525(v=vs.100).aspx
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> ORM 17

What happened to the data layer?

Modern applications relies on ORMs 
(Object-Relational Mapping) which 
expose and persist object states into 
database tables and vice versa.

A layer of entities is generated (model 
first or database first) along with their 
CRUD methods and exposed to the 
application.

> ORM 18

Most common benefits:

- Abstraction of the database (independence from a specific 
database object or from a DBMS)

- Design-first approach

- Separation of Concerns

- Optimization (automatic caching, connection pooling, …)

- Automatic type conversion



5/14/2013

CopyRight 2007 - Base16 srl 10

> ORM 19

namespace MigrationsDemo
{

public class BlogContext : DbContext
{

public DbSet<Blog> Blogs { get; set; }
}

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }

}
}

…
Blogs.where(x => x.Name == 
“Unipv”).OrderBy(x => x.BlogId);

The ORM does all the work, 
mapping the database and 
reading/writing objects.

Many languages supports 
query language, like LINQ, 
which allow the developer to 
use a SQL-like approach 
querying objects and entities

> Process 20

We mentioned controlled, quality-oriented processes, what are 
they?

An idea would be:

- Enforcing a strict predictive PM methodology (PRINCE2, …)

- Micro-managing every activity

- Assigning specific roles within the team

- Adopting some kind of QA (with a specific team)
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> Process 21

The project lifecycle would become something like:

- Gathering requirements

- Analysis

- Producing specs

- Project tasks, activities and milestones

- Development

- Test

- UAT

- Release

> Process 22

The problem is that it simply does not work well in real world, 
because:

- It is not possible to predict in advance 
(several months) how the requirements 
will chance (and they will, they always 
do);

- Business just moves faster than 
developers: what is needed today, will 
not be necessary tomorrow
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> Process: Agile 23

Let’s try something different: 
let’s go agile.

Idea: there is no need to 
predict and plan everything, 
but just what is needed to 
complete the next iteration.

Concept: Work is organized 
in iterations, meaning that a 
project is approached with a 
time-boxed method.

> An agile methodology: SCRUM 24

- Scrum is an agile process that allows us to focus on delivering the 
highest business value in the shortest time. 

- It allows us to rapidly and repeatedly inspect actual working software 
(every two weeks to one month).

- The business sets the priorities. Teams self-organize to determine 
the best way to deliver the highest priority features. 

- Every two weeks to a month anyone can see real working software 
and decide to release it as is or continue to enhance it for another 
sprint.

From: Mike Cohn, Mountain Goat Software LLC
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> An agile methodology: SCRUM 25

Main characteristics:

- Self-organizing teams

- Product progresses in a series of “sprints”

- Requirements are captured as items in a list of “product backlog”

- No specific engineering practices prescribed

- Uses generative rules to create an agile environment for delivering 
projects

- One of the “agile processes”

> An agile methodology: SCRUM 26

Process and toolsProcess and tools
Individuals and 
interactions
Individuals and 
interactions

over

Following a planFollowing a plan
Responding to 
change
Responding to 
change

over

Comprehensive 
documentation
Comprehensive 
documentation

Working softwareWorking software over

Contract negotiationContract negotiation
Customer 
collaboration
Customer 
collaboration

over
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> An agile methodology: SCRUM 27

> An agile methodology: SCRUM 28
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Want to know more?

- Agile Software Development, Principles, Patterns, and Practices, 
Robert C. Martin

- http://msdn.microsoft.com/en-us/library/ff847525(v=vs.100).aspx

- http://www.scrum.org/

Thank you for the attention


