
5/14/2013

CopyRight 2007 - Base16 srl 1

Best practice and design pattern for modern
web application building: an architectural view

Data: 14/05/2013

NOTICE OF CONFIDENTIALITY
This document contains information that is confidential and the property of base16 srl. This document and/or its contents may not be revealed or disclosed
to persons outside the entity it was prepared for, nor may it be used, copied, reproduced, modified, transmitted or republished without the prior express
written permission of base16.

> SW developers 2

Pursuing a career as a Software Engineer

- Anyone interested?

- Thoughts, ideas, how do you think it works?

- What is software development about?

- Where, who, when, how much and why.

- How does the market look like?



5/14/2013

CopyRight 2007 - Base16 srl 2

> The big challenge 3

Development

Maintenance 
and 

post-development 
implementations

Enterprise software TCO 
structure

(5yrs basis)

30%

70%

“(…)Enterprise software has gained a well-deserved 
reputation for lengthy and expensive implementations, 
followed by high ongoing costs and inflexibility(…)”

John F. Martin, Senior Vice President, Corporate & Product Strategy for 

IQNavigator, Inc.

> Gartner has estimated that up to 70% of TCO is due to 
post-implementation modifications;

> Only 10% to 30% of coding time is used to develop 
value added services and core functionalities;

> Enterprise software usually requires large upfront 
investments and a huge amount of trust;

> Ongoing benefits tends to zero (and less), due to 
increasingly maintenance, administration and update 
costs (again TCO);

> Business moves faster than software developers.

> The big challenge 4

Any idea?



5/14/2013

CopyRight 2007 - Base16 srl 3

> The big challenge 5

A good place to start:

>Solid design principles and 
patterns

>(Self-)Controlled* and quality-
oriented processes

>People and spirit

* Controlled not meaning having someone on-your-back every second, but 
meaning measuring progresses and gathering feedbacks: always seek for 
improvements. In other words: you control what you measure.

> The big challenge 6

Does it really make sense?

It takes time and money to plan a proper design. It takes 
more time and more money to enforce a solid process.

How can adding more complexity help contain 
development costs?

Well, … do not focus on the short term, but look at the 

TCO.



5/14/2013

CopyRight 2007 - Base16 srl 4

> SOLID: it’s not a casual word 7

>Single Responsibility
If there is more than one reason for a class to require a chance, 
this principle is violated

>Open-closed
A class should be open for extension but closed for modification

>Liskov substitution
objects in a program should be replaceable with instances of 
their subtypes without altering the correctness of that program

> Interface segregation
Many very specific interfaces are better than one generic

>Dependency inversion (by injection)
Depend on abstractions

> Single Responsability 8

SOLID_SRP.rtf
SOLID_OC.rtf
SOLID_DI.rtf



5/14/2013

CopyRight 2007 - Base16 srl 5

> Altri pattern e principi 9

There is much more than SOLID principles:

- Commonly used design patterns (creational, 
structural, behavioral) 
(http://www.dofactory.com/Patterns/Patterns
.aspx)

- SoC (Separation of Concerns): layered 
designs;

- MVC (Model-View-Controller): software 
architecture which enforce SoC.

> MVC 10

- View (UI): Components which 
represent the UI

- Model: once called “business 
logic”, represents the objects 
manipulated by the applications 
and the related operations

- Controller: Handle the user 
interactions, interact with the 
model layer to 
retrieve/store/manipulate data and 
push/get data to/from the views



5/14/2013

CopyRight 2007 - Base16 srl 6

> MVC: why? 11

Hey, I already know other less complicated approaches, why 
should I bother:

- Ideal approach for complex projects: makes it easier to 
manage the complexity by organizing the code into separate 
layers.

- Provide full control over the generated UI (HTML, jQuery, …)

- Not strictly enforced, but less server and more client

- Powerful routing infrastructure (front controller) and 
enhanced distributed security

- Ideal for unit testing (easy to mock)

- Ideal for mid-large teams

> TDD and mocking 12

How is quality enforced?

- Developers could do mistakes

- Testing during development is up to the developer

- Not all the possible behaviors might be foreseen 

- Edges or boundaries are sometimes tricky

- Real data can differ from test data

- User behaviors are unpredictable

- Null parameters

- …



5/14/2013

CopyRight 2007 - Base16 srl 7

> TDD and mocking 13

As seen at the beginning an application costs because of its 
maintenance, meaning that since developers have to chase 
bugs around and solve them, it cost a lot of money.

Wouldn’t it be nice if at the end of 
development the application was 
already tested?

> TDD and mocking 14



5/14/2013

CopyRight 2007 - Base16 srl 8

> TDD and mocking 15

So, basically with TDD a development team

- Write only the minimum required code to pass a set of tests

- Tests are written in advance, before code

- Development in carried out in iterations (Agile, we’ll get there 
in a while)

But, to do that:

- Tests must be executable automatically in a test 
environment

- Tests must not rely on a full infrastructure (web server, Db, 
…)

> TDD and mocking 16

How can I not rely on the infrastructure: if it’s a web application 
I will need a web server to test it, right? … No

This is where mocking come at hand: mock objects can 
reproduce the behavior of real object without relying on the 
infrastructure.

Let’s see how it works:

http://msdn.microsoft.com/en-
us/library/ff847525(v=vs.100).aspx



5/14/2013

CopyRight 2007 - Base16 srl 9

> ORM 17

What happened to the data layer?

Modern applications relies on ORMs 
(Object-Relational Mapping) which 
expose and persist object states into 
database tables and vice versa.

A layer of entities is generated (model 
first or database first) along with their 
CRUD methods and exposed to the 
application.

> ORM 18

Most common benefits:

- Abstraction of the database (independence from a specific 
database object or from a DBMS)

- Design-first approach

- Separation of Concerns

- Optimization (automatic caching, connection pooling, …)

- Automatic type conversion



5/14/2013

CopyRight 2007 - Base16 srl 10

> ORM 19

namespace MigrationsDemo
{

public class BlogContext : DbContext
{

public DbSet<Blog> Blogs { get; set; }
}

public class Blog
{

public int BlogId { get; set; }
public string Name { get; set; }

}
}

…
Blogs.where(x => x.Name == 
“Unipv”).OrderBy(x => x.BlogId);

The ORM does all the work, 
mapping the database and 
reading/writing objects.

Many languages supports 
query language, like LINQ, 
which allow the developer to 
use a SQL-like approach 
querying objects and entities

> Process 20

We mentioned controlled, quality-oriented processes, what are 
they?

An idea would be:

- Enforcing a strict predictive PM methodology (PRINCE2, …)

- Micro-managing every activity

- Assigning specific roles within the team

- Adopting some kind of QA (with a specific team)



5/14/2013

CopyRight 2007 - Base16 srl 11

> Process 21

The project lifecycle would become something like:

- Gathering requirements

- Analysis

- Producing specs

- Project tasks, activities and milestones

- Development

- Test

- UAT

- Release

> Process 22

The problem is that it simply does not work well in real world, 
because:

- It is not possible to predict in advance 
(several months) how the requirements 
will chance (and they will, they always 
do);

- Business just moves faster than 
developers: what is needed today, will 
not be necessary tomorrow



5/14/2013

CopyRight 2007 - Base16 srl 12

> Process: Agile 23

Let’s try something different: 
let’s go agile.

Idea: there is no need to 
predict and plan everything, 
but just what is needed to 
complete the next iteration.

Concept: Work is organized 
in iterations, meaning that a 
project is approached with a 
time-boxed method.

> An agile methodology: SCRUM 24

- Scrum is an agile process that allows us to focus on delivering the 
highest business value in the shortest time. 

- It allows us to rapidly and repeatedly inspect actual working software 
(every two weeks to one month).

- The business sets the priorities. Teams self-organize to determine 
the best way to deliver the highest priority features. 

- Every two weeks to a month anyone can see real working software 
and decide to release it as is or continue to enhance it for another 
sprint.

From: Mike Cohn, Mountain Goat Software LLC



5/14/2013

CopyRight 2007 - Base16 srl 13

> An agile methodology: SCRUM 25

Main characteristics:

- Self-organizing teams

- Product progresses in a series of “sprints”

- Requirements are captured as items in a list of “product backlog”

- No specific engineering practices prescribed

- Uses generative rules to create an agile environment for delivering 
projects

- One of the “agile processes”

> An agile methodology: SCRUM 26

Process and toolsProcess and tools
Individuals and 
interactions
Individuals and 
interactions

over

Following a planFollowing a plan
Responding to 
change
Responding to 
change

over

Comprehensive 
documentation
Comprehensive 
documentation

Working softwareWorking software over

Contract negotiationContract negotiation
Customer 
collaboration
Customer 
collaboration

over



5/14/2013

CopyRight 2007 - Base16 srl 14

> An agile methodology: SCRUM 27

> An agile methodology: SCRUM 28



5/14/2013

CopyRight 2007 - Base16 srl 15

> Bibliografia 29

Want to know more?

- Agile Software Development, Principles, Patterns, and Practices, 
Robert C. Martin

- http://msdn.microsoft.com/en-us/library/ff847525(v=vs.100).aspx

- http://www.scrum.org/

Thank you for the attention


