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Abstract Despite the fast evolution of cloud computing, up to now the
characterization of cloud workloads has received little attention. Neverthe-
less, a deep understanding of their properties and behavior is essential for
an effective deployment of cloud technologies and for achieving the desired
service levels. While the general principles applied to parallel and distributed
systems are still valid, several peculiarities require the attention of both re-
searchers and practitioners. The aim of this chapter is to highlight the most
relevant characteristics of cloud workloads as well as identify and discuss the
main issues related to their deployment and the gaps that need to be filled.
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1 Introduction

Cloud technologies are being successfully deployed nowadays in many busi-
ness and scientific domains, such as e-commerce, e-government, engineering
design and analysis, finance, healthcare, web hosting and online social net-
works. In particular, these technologies provide cost-effective scalable solu-
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tions, thanks to the flexibility and elasticity in resource provisioning and the
use of advanced virtualization and scheduling mechanisms [5, 13].

Cloud workloads consist of a collection of many diverse applications and
services, each characterized by its own performance and resource require-
ments and by constraints specified in the form of Service Level Agreements
(SLAs). A large number of factors affects cloud performance, including,
among the others, the variability in the resource and network conditions
and the highly dynamic nature of the workloads, whose intensity can sud-
denly grow or shrink as a consequence of the user interactions. More specifi-
cally, the use of virtualized time-shared resources could lead to performance
degradation. This degradation is mainly due to the interference and resource
contention arising from the co-location of heterogeneous workloads on the
same physical infrastructure and to the overheads caused by the resource
management policies being adopted. Similarly, the mix of workloads concur-
rently executed on a given virtual machine (VM) can be responsible for some
unpredictable effects on the performance because of incompatible temporal
patterns of the resource usage [74]. These performance issues could become
even more critical in multi-cloud environments where the workload is dis-
tributed across different cloud infrastructures.

In these complex scenarios, mapping cloud resources to workload charac-
teristics is very challenging [42]. Nevertheless, it is of primary importance for
an effective deployment of cloud technologies and to achieve the desired ser-
vice levels. Hence, to address resource management, provisioning and online
capacity planning, and, more generally, to manage and predict performance
and Quality of Service (QoS), it is essential to gain a deep understanding
of the properties and the evolution of cloud workloads. Therefore, system-
atic and structured approaches towards workload characterization have to be
considered as an integral component of all these strategies.

Despite their importance, the characterization and forecasting of cloud
workloads have been addressed in the literature to a rather limited extent
and mostly at the level of the VMs without taking into consideration the fea-
tures of the individual workload components running on the VMs themselves.
The aim of this chapter is to provide an overview of the main issues related
to the entire lifecycle of workload deployment in cloud environments. More
specifically, starting from the identification of the most relevant behavioral
characteristics of cloud workloads, we define some broad workload categories
described in terms of qualitative and quantitative attributes. The chapter
then focuses on the various workload categories and discusses the challenges
related to their monitoring, profiling and characterization. This thorough in-
vestigation of the state of the art is complemented by a literature review of
the exploitation of scheduling strategies and failure analysis and prediction
mechanisms the framework of cloud workloads.

The chapter is organized as follows. Section 2 presents the categories iden-
tified for cloud workloads, while Section 3 discusses the main issues related to
their monitoring and profiling. The workload structures and resource require-
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ments are addressed in Sections 4 and 5, whereas the challenges related to
workload scheduling and failure analysis and prediction are briefly illustrated
in Sections 6 and 7, respectively. Finally, Section 8 presents some concluding
remarks.

2 Workload categories

The term workload refers to all inputs (e.g., applications, services, transac-
tions, data transfers) submitted to and processed by an e-infrastructure. In
the framework of cloud computing, these inputs usually correspond to online
interactions of the users with web-based services hosted in the cloud or to
jobs processed in batch mode. On the contrary, cloud workloads almost never
refer to hard real-time applications.

In this section, we analyze the behavioral characteristics of cloud workloads
(i.e., their qualitative and quantitative attributes) to identify some broad
categories specified in terms of various dimensions, namely:

• Processing model.
• Architectural structure.
• Resource requirements.
• Non-functional requirements.

The choice of these dimensions is mainly driven by their role in the formula-
tion of the cloud management strategies and in the assessment of the service
levels foreseen by the workloads.

The processing model adopted by the workload, that is, online (i.e., in-
teractive) and offline (i.e., batch or background), is an important high level
dimension that identifies two workload categories. These categories are char-
acterized by very diverse behaviors and performance requirements as well
as by a different impact on management policies (e.g., resource scheduling,
VM placement, VM migration). An interactive workload typically consists
of short lived processing tasks submitted by a variable number of concurrent
users, whereas a batch workload consists of resource intensive long lived tasks.
Hence, as we will discuss later on, these workload categories exercise cloud
resources to a rather different extent.

Another dimension chosen to classify cloud workloads focuses on their
architectural structure expressed in the form of the processing and data flows
characterizing each individual application. More precisely, these flows are
described by the number and types of services or tasks being instantiated by
a cloud application and their mutual dependencies, and, as such, have a strong
impact on the scheduling policies. In particular, multiple task applications
can be organized according to different models, namely:

• Pipeline model.
• Parallel model.
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• Hybrid model.

In the pipeline model, tasks need to be processed sequentially one after the
other with tight precedence constraints. On the contrary, in the parallel model,
the tasks are characterized by precedence constraints that allow for concur-
rent execution of multiple tasks. In addition, these models are often combined
in a sort of hybrid architectural model where the relationships among tasks
are usually more complex. Figure 1 shows an example of a directed acyclic
graph that represents the data flow of a simple cloud application organized
according to a hybrid model. The nodes and edges denote the datasets and
relationships between them, respectively.
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Fig. 1 Directed acyclic graph representing the data flow of a cloud application organized

according to a hybrid model.

In the framework of scientific workloads, their description often relies on
the many-task computing (MTC) paradigm [67], an architectural structure
consisting of loosely coupled tasks and involving large volumes of data. Con-
versely, interactive cloud applications are typically organized according to
multi-tier architectures. As we will discuss in Section 4, the interdependency
among tiers and the patterns followed by the applications strongly affect the
deployment of scaling strategies in cloud environments. Moreover, it is not
always possible to derive a detailed view of the workload structure because
of the lack of specific design information.

The definitions of workload architectural structures do not include any
details about the behavioral characteristics of the workload at runtime (e.g.,
resource requirements, scheduling events). Nevertheless, qualitative attributes
(e.g., priority, termination status) and quantitative attributes (e.g., workload
intensity, demands and usage patterns of cloud resources) are very relevant
to devise accurate resource allocation strategies. In particular, quantitative
attributes provide a detailed characterization of the computing, communica-
tion and storage requirements of the workload and have to be assessed very
carefully to avoid overprovisioning or underprovisioning of the resources (e.g.,
CPU, memory, I/O, network).
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Depending on the amount of resources used, workloads are classified as:

• Compute or I/O intensive.
• Elastic or bandwidth sensitive.

Generally speaking, we can say that network bandwidth is more critical for
online interactive workloads, whereas storage and computing resources often
characterize batch workloads. Moreover, the resource requirements of some
workloads are stable (i.e., uniformly distributed over their execution), whereas
other workloads (e.g., workloads associated with online services) exhibit some
specific temporal patterns, such as periodic, bursting, growing and on/off.
These patterns typically depend on the intrinsic characteristics of the appli-
cations, as well as on the workload intensity. In details, patterns can refer
to a single resource or multiple resources. A communication intensive phase
can be followed by a compute intensive phase. Similarly, during the execution
of an application, the bandwidth usage can change and follow some specific
patterns.

As already pointed out, cloud workloads consist of streams of jobs and
requests submitted at unpredictable times. Hence, their arrival process is sel-
dom deterministic. It is often characterized by various effects (e.g., diurnal
patterns, seasonal effects, flash crowd phenomena). In general, the burstiness
in the workload intensity and heavy load conditions cause sudden and unex-
pected peaks in the resource demands that have a critical impact on resource
provisioning strategies. Figure 2 shows two examples of qualitative patterns,
namely, a diurnal pattern typically associated with the intensity of interactive
workloads and a periodic pattern corresponding to CPU usage.
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Fig. 2 Examples of a diurnal pattern characterizing the workload arrivals (a) and a peri-
odic pattern describing the CPU usage (b).

An additional dimension describing the workload refers to non-functional
requirements related to SLA constraints (e.g., performance, dependability, se-
curity). Among these attributes reliability is particularly important in cloud
environments especially when deploying business-critical or safety-critical ap-
plications. Reliability denotes the probability that workloads can successfully
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complete in a given time frame. The presence of failures decreases the reli-
ability. Failures are due to various types of events (e.g., software bugs, ex-
ceptions, overflows, timeouts). For example, for data intensive workloads, a
sudden increase in the rate at which data are submitted for processing can
lead to failures, thus making the service unavailable. Moreover, failures are
often correlated, that is, they often occur between dependent or co-located
services or applications.

The remainder of the chapter focuses on the approaches typically adopted
for monitoring and characterizing the workload categories presented in this
section. The issues related to workload scheduling and failure analysis will
also be discussed.

3 Workload monitoring and profiling

Monitoring and profiling are the basis for measuring the qualitative and quan-
titative attributes of the workloads. Generally speaking, monitoring keeps
track of the activities performed by the workloads being processed and of
the status of the allocated and the available resources. Profiling focuses on
describing how workload exploits the cloud resources. Monitoring and profil-
ing in the clouds are particularly difficult because of the heterogeneity and
dynamicity of these environments [82]. Nevertheless, these activities play a
critical role when addressing scenarios, such as:

• Capacity planning and resource management.
• Performance tuning.
• Billing.
• Security and troubleshooting.
• SLA verification.

Various approaches have been devised to tackle specific monitoring issues
(e.g., measurement sources and accuracy, sampling granularity, intrusiveness
and scalability). In what follows, we focus on the workload attributes that
can be monitored at runtime to describe the resource usages. The level of
details of the measurements collected in the clouds depends on the monitoring
perspective adopted, namely, cloud providers and cloud users. Three basic
types of cloud monitoring targets can be considered:

• Client.
• Virtual machine.
• Physical machine.

More specifically, cloud providers can measure resource usages of physical
machines and of individual VMs from the vantage point of the hypervisor.
On the other hand, cloud users are restricted to measure their own workloads
using client logging and profiling facilities. Indeed, the VM isolation typical
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of virtualization technologies hides the characteristics and performance of the
underlying physical machines and the VM management policies. In details, to
collect measurements on resource usage and cross-correlate them with appli-
cation specific data and scheduling details, cloud users have often to resort to
profiling facilities made available by providers (see, e.g., [28, 70]). To derive
a more detailed description of the workloads being processed, VM measure-
ments can be complemented with additional information about the workload
structure, as well as with guest operating system statistics. Moreover, ap-
plication logs are exploited to correlate the resource usages with workload
intensity and characteristics.

Monitoring tools usually collect measurements by deploying distributed
software agents that periodically gather information about the usage of re-
sources, such as CPU, memory and I/O devices. In general, monitoring ap-
proaches rely on system tools and interfaces (e.g., vmstat, iostat, netstat)
or on proprietary solutions [1, 45]. Moreover, depending on the monitoring
capabilities of the virtualization technologies, ad-hoc scripts can be used for
sampling low level quantitative attributes, such as CPU waiting times, num-
ber of virtual memory swaps, TLB flushes and interrupts [7]. The monitoring
agents can also collect VM scheduling and provisioning events, (e.g., num-
ber and types of allocated VMs) [11]. The granularity and level of details
of the measurements have to be chosen with the aim of limiting the moni-
toring intrusiveness. Measurements are usually stored into tracelogs, that is,
collections of time stamped recordings of various types of information (e.g.,
resource demands, scheduling events, application specific data). Note that,
despite the importance of workload measurements for both researchers and
practitioners, cloud providers are seldom willing to publish detailed measure-
ments about their own workloads often to prevent leakage of confidential
competitive information.

Profiling is another approach applied to measure the resource usage of
individual workload activities for driving performance tuning actions. In par-
ticular, profiling can be exploited by cloud users for optimal dynamic resource
provisioning and by cloud providers for tuning VMs placement and scheduling
policies [27]. In cloud environments, profiling has to cope with new challenges
due to interference among co-located VMs. Indeed, the sharing of hardware
resources could result in unpredictable behaviors of hardware components,
such as cache memories, CPU pipelines and physical I/O devices [85]. Typ-
ical solutions for collecting profiling measurements are based on dynamic
instrumentation and sampling hardware performance counters. An alterna-
tive approach is based on measuring at the hypervisor level the overall be-
havior of the VMs hosting the target applications. In details, the dynamic
instrumentation takes advantage of software probes that selectively record
runtime events about the application behavior (e.g., time stamps related to
the execution of a given portion of an application). On the other hand, hard-
ware based profiling exploits CPU performance monitoring unit for sampling
counters related to low level events, such as cache misses, clock cycles per
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instruction, pipeline stalls and branch mispredictions. In general, profiling
can cause significant intrusiveness. Indeed, fine grained instrumentation and
high sampling frequency result in large volume of measurements and pertur-
bations of the workload behavior. On the contrary, coarse grain sampling and
instrumentation could lead to ignore some rare though important events that
might have a significant impact on the overall resource usages. To reduce the
intrusiveness and the resource requirements of profiling activities various so-
lutions, such as adaptive bursty tracing technique, based on a sampling rate
inversely proportional to code execution frequency, have been devised [48].

Although monitoring and profiling are essential aspects of cloud comput-
ing, up to now no portable, general purpose and interoperable monitoring
and profiling tools exist. This lack results in a plethora of open source and
commercial tools addressing specific targets and platforms [15, 31]. Examples
of open source monitoring tools are: Nagios1, that is part of the OpenStack
suite2, Ganglia3, Collectl4 and MonALISA5. Cloud providers offer several
commercial tools (e.g., Amazon Cloudwatch, Microsoft Azure Watch, IBM
Tivoli Monitoring, Rackspace, Rightscale, Cloudify, Aneka). While these
monitoring facilities are designed to be deployed to cloud environments, exter-
nal monitoring services like CloudHarmony6, CloudSleuth7, CloudClimate8

and Up.time9, focus on monitoring applications and infrastructures from
multiple locations on the Internet.

The development of a common framework for workload monitoring and
profiling in the clouds is an open issue, that might also prevent users to
deploy their businesses in these environments [39]. To improve the scalability
and effectiveness of monitoring service consolidation and isolation, recent
studies introduced the concept of Monitoring as a Service (MaaS) [59, 62].
The possibility for cloud users to monitor the global state of their applications
is a challenging research question that deserves some further explorations.

4 Workload structures

In this section, we present a literature review of the most common structures
of cloud workload introduced in Section 2, and the models used for their rep-

1 http://nagios.sourceforge.net
2 http://www.openstack.org
3 http://ganglia.sourceforge.net
4 http://collectl.sourgefourge.net
5 http://monalisa.caltech.edu
6 http://cloudharmony.com
7 http://cloudsleuth.net
8 http://www.cloudclimate.com
9 http://www.suptimesoftware.com



Workloads in the Clouds 9

resentation. Workload architectural structure is the description of the tasks
an application consists of and their relationships. This structure is usually
known at design time, whereas it can be difficult to derive it at runtime. Nev-
ertheless, it is an important characteristic to be taken into account for the
dynamic provisioning and optimal allocation of cloud resources and for iden-
tifying cost-effective solutions able to exploit the available parallelism (see,
e.g., [14, 57, 84]). From the cloud provider perspective the aim is to max-
imize both resource utilization and energy savings, whereas from the cloud
user perspective the aim is to minimize the operational costs while achieving
optimal performance. The workload structures covered in this section refer
to the following frameworks:

• MapReduce programming model.
• Workflow technologies.
• Many task computing paradigm.
• Multi-tier architecture.

These structures are not restricted to a single processing model. For example,
a multi-tier architecture can be exploited for both batch and interactive appli-
cations. In details, batch applications often consist of tasks with parent-child
relationships. These applications are modeled as workflows describing the
tasks in terms of data dependencies and data and control flows. As stated in
Section 2, typical workflow schemes are pipeline, parallel and hybrid, that is,
sequential, concurrent and combinations of sequential and concurrent tasks,
respectively.

Several approaches have been proposed to take advantage of the concur-
rency of application workflows. For example, MapReduce [24] is a program-
ming model introduced to ease the exploitation of the parallelism in big data
analytic workflows. Applications based on this paradigm are executed ac-
cording to a hybrid structure consisting of multiple concurrent tasks (i.e.,
map and reduce workers), as illustrated in Figure 3. The intermediate data
shuffle addresses the data dependencies of the workflow. To describe and
predict interarrival times and resource demands of MapReduce workloads,
statistical techniques, such as kernel canonical correlation analysis and prob-
abilistic distribution fitting, have been proposed [6, 33]. Due to the hetero-
geneity of the application domains in which MapReduce is exploited, the
workloads are often characterized in terms of different attributes (e.g., work-
load intensity, task durations and constraints) [20, 71]. Very popular cloud
technologies based on MapReduce (i.e., Apache Hadoop10, Spark11) perform
automatic optimizations and data distributions. However, the deployment of
Hadoop applications requires the tuning of many configuration parameters
that might heavily affect the overall performance [87]. On the other hand,
Spark applications take advantage of in-memory computations to reduce the
overhead of Hadoop distributed file system [44].

10 http://hadoop.apache.org
11 http://spark.apache.org
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Fig. 3 Overview of MapReduce programming model.

In the framework of scientific computing, workflow technologies are an ap-
proach for easy and efficient development of applications with hybrid struc-
tures. In the literature, the workflow of these applications has been analyzed
in terms of resource demands (e.g., number of tasks and their CPU, mem-
ory and I/O demands) [47, 92]. Similarly to workflow technologies, the many
task computing paradigm is widely used to develop distributed loosely cou-
pled scientific applications. MTC applications typically require over short
time periods a large amount of computational resources to process the so-
called bag-of-tasks. Hence, MTC is well suited to take advantage of dynamic
provisioning of cloud resources. The studies related to the deployment of
these applications on the clouds mainly focus on performance analysis of var-
ious types of infrastructures, such as commercial cloud computing services
and federated clouds [61, 72]. In particular, performance and resource de-
mands of scientific MTC applications have been investigated by analyzing
workload tracelogs collected in environments other than clouds (e.g., paral-
lel production infrastructures, grids). The behavior of scientific workflows is
characterized in [40] in terms of number of jobs and of bag-of-tasks to identify
the bottleneck in the resources. Workload tracelogs have also been analyzed
for developing strategies aimed at reducing the impact of transient failures
on the overall behavior of MTC applications [17]. These strategies, based on
checkpoint and speculative execution policies, reduce the large overheads due
to the entire bag-of-tasks resubmission, although they might affect resource
usages with unnecessary duplicated task executions. It is worth noting that
clouds can be a cost-effective and scalable alternative to the traditional high
performance computing environments for a large variety of scientific appli-
cations, even though performance can be an issue. Indeed, bandwidth and
jitters on network delays are among the most critical factors that limit the
performance of scientific applications [58].
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Regarding interactive workloads, that usually need to cope with the dy-
namic behavior of users, cloud computing is mainly adopted for deploying
large scale applications in domains, such as e-commerce, financial services,
healthcare, gaming and media servers. A common solution to address these
highly variable load conditions is based on multi-tier architectures, where
each tier, deployed on one or multiple VMs, addresses a specific functionality
(e.g., web, database, application logic, load balancing). As an example, Fig-
ure 4 depicts an architecture of a five-tier web application. The advantage of
this solution is the possibility of dynamically scaling each tier independently,
both horizontally and vertically. Horizontal scaling deals with varying the
number of VM instances (see Fig. 4 (b)). On the contrary, vertical scaling
is about varying the amount of resources allocated to individual VMs. Fig-
ure 4 (c) shows that the VM deploying the web server scales up and doubles
its number of cores.

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Initial deployment Horizontal scaling Vertical scaling

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Load balancer

Web server

Application server

Load balancer

Database server

CPU

(a) (b) (c)

Tiers

Fig. 4 Example of a five-tier architecture typical of large-scale web applications with its
initial deployment (a), and the horizontal (b) and vertical (c) scaling of the web server

tier, respectively.

Resource provisioning for multi-tier architectures is challenging because of
the functional interdependence among the tiers and the network overhead.
Therefore, the sizing of each tier plays a critical role for this kind of appli-
cations [41]. Moreover, it is difficult to model multi-tier applications due to
the dynamic and unpredictable behavior of their users. In this framework, re-
source provisioning and scaling have been investigated using stochastic mod-
els based on queuing networks and control theory [38]. For vertical scaling,
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linear regression methods, Markov chains and queuing network models are
often used to represent the relationships between workload being processed
and resource demands. Many studies focus on probability distributions and
statistical bound techniques to derive performance metrics of cloud envi-
ronments, such as response time, throughput and resource utilizations (see,
e.g., [10, 75]). These metrics are used to characterize the workload, predict its
behavior and scale resources accordingly. An alternative approach is based on
multi-input multi-output control systems, where inputs are the resources al-
located to each tier and outputs are the measured performance metrics [93].
For horizontal scaling, reactive heuristics leveraging a threshold-based set
of rules are commonly used. Thresholds on resources utilization trigger the
start or the shutdown of VMs in order to ensure given QoS levels [53]. More-
over, proactive approaches for resource provisioning take into account the
resource demands as a function of the workload intensity. For example, queu-
ing networks can be used for modeling the relationships between number and
characteristics of allocated VMs and metrics, such as blocking and immedi-
ate service probabilities [51]. Additionally, optimal resource provisioning has
been addressed by means of queuing network and simulation models [36, 37].

5 Workload attributes

In this section, we present a literature review of the approaches typically ap-
plied to characterize cloud workloads in terms of both qualitative attributes
related to jobs and tasks events and quantitative attributes describing work-
load intensity and the demands of cloud resources (i.e., computing, commu-
nication and storage). These attributes are usually obtained from historical
data (e.g., tracelogs) and runtime measurements. It is important to point out
that tracelogs published by Google [69] are among the few publicly avail-
able cloud measurements. These logs store both qualitative and quantitative
anonymized attributes about the jobs executed on a large cluster (i.e., de-
mands and actual usages of CPU, memory and disk space, scheduling events
of jobs and tasks).

The workload models obtained as a result of characterization studies are
very useful when addressing the optimization of resource usage, the definition
of scheduling policies and energy aware solutions, the prediction of failures
and many other cloud management issues. In the literature, cloud workloads
are characterized by focusing on jobs and tasks and analyzing their attributes,
referring to:

• Resource usages.
• Workload intensity.

Commonly adopted approaches are based on various types of techniques,
often used in combination, such as:
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• Statistical and numerical techniques.
• Stochastic processes.

Some papers [55, 68] analyze the resource usages and their dynamics at job
and task levels, by applying a statistical approach based on a high level
exploratory analysis (i.e., descriptive statistics, empirical distributions of re-
source usages, visual inspection of their temporal behavior). These studies
rely on the Google tracelogs. In particular, patterns of task submissions, in-
terarrival times, relationships between resource usage and task status (i.e.,
killed, normally terminated, failed) are considered. For example, the iden-
tification of jobs resubmitted because of failures or evictions provides some
interesting insights for predicting the resources actually required by the work-
load.

In order to derive realistic models that capture the heterogeneity of jobs
and tasks, more advanced statistical and numerical techniques (e.g., cluster-
ing, fitting) are adopted. Clustering techniques are usually applied to identify
groups of workload components characterized by similar behaviors. Early pa-
pers [21, 60] classify jobs and tasks based on their CPU and memory usage.
In particular, a medium grain classification of tasks highlights the presence of
few tasks that consume a large amount of resources. More recently, the sta-
tistical properties of the workload are analyzed to classify cloud applications
in terms of both quantitative (i.e., resource requirements) and qualitative
(i.e., task events) attributes [25]. In general, job and task classification has
been applied for devising scheduling and allocation policies. For example,
the approach proposed in [66] estimates the resource demands of tasks and
predicts the cluster to which a new arriving job belongs to according to its
initial resource demands. As a consequence, resource utilization and energy
saving can be improved. In [9] clustering is applied to identify tasks charac-
terized by similar memory and CPU usages, as well as tasks whose memory
usage is independent from their CPU usage. Moreover, this study analyses
the dynamics of the CPU usage to discover weekly and daily patterns and in
particular synchronized peaks whose presence is important for devising more
efficient allocation strategies.

As pointed out in Section 3, it is difficult to obtain detailed measures
on resource usages of the specific workload components. Most studies rely
on measurements collected at the VM level. Although these measurements
refer to the overall resource usage of individual VMs, they provide an ac-
curate description of the application behavior in virtualized environments.
Understanding and modeling this behavior are important in many domains,
such as workload scheduling, VM failure monitoring and intrusion detection.
To highlight the variability in resource usage and the presence of temporal
patterns, some studies combine statistical metrics (e.g., correlation between
attributes) with auto-correlation functions and time series analysis [7, 76].
The evolution of CPU, memory and disk utilizations is analyzed in [11] by
representing their dynamics and fluctuations as a time series at different time
scales. Numerical fitting techniques are applied to build models that capture
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the temporal variability in resource usages. Moreover, by looking at the corre-
lations among resource usages, dependencies to be exploited in the design of
effective consolidation strategies are identified. A time series approach is also
adopted in [50] to represent CPU usage patterns. Additionally, a co-clustering
technique identifies groups of VMs with workload patterns, whereas a Hidden
Markov Model predicts the changes of these patterns.

Workload intensity is another important aspect extensively analyzed in
the literature because of its strong impact on cloud performance. In [78]
workload intensity is quantified in terms of task submission rate and clus-
tering is applied to highlight variability in the submission rate across groups
of tasks. Other papers model the workload intensity by means of stochas-
tic processes. It has been shown that simple Poisson processes generating
independent identically distributed interarrival times are not suited to rep-
resent real cloud workloads [46]. Burstiness, a well-known characteristic of
network traffic, has also been observed in cloud environments. Bursty and
fractal behaviors of the arrival processes affect in particular load balancing
strategies [81]. In addition, detecting, measuring and predicting these phe-
nomena are important for devising efficient resource provisioning and energy
saving strategies. To describe the time varying behavior and self-similar ef-
fects, metrics, such as index of dispersion and coefficient of variation, are
complemented with models based on 2-state Markovian Arrival Processes,
parameterized with different levels of burstiness [88]. The two states repre-
sent the bursty and non-bursty request arrival processes, respectively (see
Fig. 5). Markovian Arrival Processes are integrated in [64] with analytical
queueing models to predict system performance. A different approach based
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Fig. 5 Example of non-bursty and bursty arrivals (a) and the corresponding 2-state

Markovian Arrival Process (b).

on fractal techniques is proposed in [16, 35] for representing workload dynam-
ics in terms of job arrivals. The arrival process is modeled using fractional
order differential equations with time dependent parameters, whereas fitting
is applied to identify statistical distributions for CPU and memory usages.

The literature review presented in this section highlights the importance
of taking into account workload characteristics to effectively deploy cloud
technologies. Even though different approaches to workload characterization
in cloud environments have been proposed, few studies focus on the attributes
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of the individual workload components. In addition, there is the need to devise
more systematic approaches towards workload characterization. The lack of
publicly available workload measurements makes quite difficult to investigate
real life cloud computing scenarios.

6 Workload scheduling

Workload scheduling, i.e., the mapping between jobs/tasks and VMs, is a
challenging issue in cloud environments because of the heterogeneity of work-
load characteristics (e.g., intensity and resource demands). The problem of
finding an optimal mapping is NP-complete and therefore intractable with
exact methods when the number of VMs and tasks is large, as it is typically
the case of cloud environments. For this reason, (meta-)heuristics are cur-
rently used to find sub-optimal solutions. Meta-heuristics based on methods,
such as neural networks, evolutionary algorithms or set-of-rules, are proved to
be efficient in solving optimization problems related to scheduling. In the re-
mainder of this section, we review the literature (see Table 1 for an overview)
by briefly discussing the following aspects of workload scheduling:

• Scheduling objectives.
• Optimization approaches.
• Resource scaling.
• Load balancing.
• Scheduling of real-time applications.

Objectives of the scheduling problem are multiple (e.g., to minimize
makespan, data transfer, energy consumption and economic cost, to satisfy
SLAs). A simple approach takes into account one objective at a time. Alter-
native approaches are aimed at combining multiple objectives into a single
aggregate objective function (see, e.g., [79]) or considering multi-objective al-
gorithms (see, e.g., [29, 90]). A recent survey summarizes the evolutionary ap-
proaches for scheduling in cloud environments [89]. The different viewpoints
for scheduling and the corresponding objectives are identified as follows:

• Scheduling for user QoS, where objectives include the makespan and user
costs minimization, application performance and reliability.

• Scheduling for provider efficiency, where objectives are load balancing,
utilization maximization and energy savings.

• Scheduling for negotiation, where the goal is to satisfy both user and
provider objectives at the same time.

Exact methods for solving the optimization problem (e.g., constrained bi-
nary integer programming) can be used in simple scenarios only, such as triv-
ial parallel workloads where tasks are fully decoupled without any precedence
constraint [83]. For more general workload structures, the problem complexity
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Reference Workload

structure

Method Optimization

objectives

Deployment

model

Somasundaram
and Govindara-

jan [79]

Tasks with
deadlines

Particle swarm Execution time and
economic cost

Private

Duan et al. [29] MTC Game theory
(multi-objective)

Makespan and
economic cost

Hybrid

Zhang et al. [90] MTC Vectorized ordinal

optimization
(multi-objective)

Makespan and

economic cost

Private

Zhan et al. [89] Survey on evolutionary approaches to scheduling

Van den

Bossche et al.
[83]

Tasks with

deadlines

Binary integer

programming

Resource utilization Hybrid

Pandey et al.

[65]

Workflow Particle swarm Makespan Public

Kessaci et al.
[49]

Tasks with
deadlines

Pareto-based
genetic algorithm

(multi-objective)

Energy consumption,
carbon emission and

profit

Federated

de Oliveira et
al. [63]

Independent
tasks

Ant colony Makespan and load
balancing

Federated

Wu et al. [86] Survey on workflow scheduling

Jiang et al. [43] Workflow Path clustering

heuristics and list
based scheduling

Makespan and

resource utilization

Private (High

Performance
Computing)

Zhang et al. [91] Independent

tasks with
priorities

Model predictive

control with
heuristics

Energy consumption,

scheduling delay and
economic cost

Public and

Private

Mao and

Humphrey [56]

Workflow Heuristics Economic cost Public and

Private

Dutta et al. [30] Interactive Decision tree Resource usage Public and
Private

Ardagna et al.

[4]

Interactive Reactive set of

rules

Resource usage Public and

Private

Cheng et al.

[22]

Interactive

and batch

Nonlinear

optimization

QoS and load

balancing

Hybrid

Singh et al. [77] Interactive
multi-tier

Clustering and
queueing

QoS Public

Spicuglia et al.

[80]

Interactive Reactive heuristic

with thresholds

Response time,

resource utilization
and load balancing

Public and

Private

Li et al. [52] Real-time

tasks

Heuristic with

penalties on

deadline

Economic cost Public and

Private

Liu et al. [54] Real-time
tasks

Heuristic with
eviction

Economic cost Public and
Private

Table 1 Summary of the state of the art on workload scheduling in cloud environments.
References are ordered as they appear in the text.
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increases and it is necessary to devise heuristic optimization methods, such
as particle swarm optimization [65], genetic algorithms [49], ant colony opti-
mization [63] and game theoretic algorithms [29]. Another recent survey [86],
focusing on the main issues related to workflow scheduling, subdivides the
scheduling methods into three main categories, namely:

• Static scheduling, where workload structure is known a priori and resources
have instantaneous availability.

• Dynamic scheduling, where workload structure can be obtained at runtime.
• Static planning with dynamic scheduling, where the structure and com-

munication time can be estimated. Tasks are statically planned, although
dynamically scheduled to resources at runtime.

Examples of offline methods for static scheduling multi-tenant workflows in
cloud environments are presented in [43]. These methods take advantage of
gaps in the schedule due to communication overheads and task dependencies.
In particular, the gap search is performed on the entire task group or in a
distributed fashion by working on its partitions. The scheduling problem
can be even more complex when task priorities are considered [91]. Low-
priority tasks are often evicted because of the overcommitment of physical
resources. Moreover, changes in the cloud environment properties can affect
the priorities of jobs and tasks.

Job scheduling and resource scaling are often considered in conjunc-
tion [56]. Several frameworks have been recently introduced to address re-
source scalability. For example, SmartScale [30] is an automated scaling
framework that uses a combination of vertical and horizontal approaches to
optimize both resource usages and reconfiguration overheads. Scaling mecha-
nisms are also encountered in [4] where different scalability patterns are con-
sidered and an approach to performance monitoring that allows automatic
scalability management is proposed. Auto-scaling is often used in conjunction
with load balancing strategies. Even though physical machines are often the
main target of these strategies, effective load balancing and resource alloca-
tion policies take into account the concurrent execution of different applica-
tion types, i.e., interactive, batch, and the mix of applications with different
resource requirements and workload structures (see Sect. 4) [22, 77, 80].

Hard real-time applications (i.e., applications characterized by hard dead-
lines that are a-priori guaranteed to be met) are not well suited to the current
cloud infrastructures. In fact, the virtualization technologies and network pro-
tocols used in the clouds are not designed to provide the timing guarantees
required by these applications. However, the so-called soft deadlines are often
taken into account by the schedulers because of the penalties associated with
the negotiated SLAs [52, 54]. Despite hard real-time applications, for online
services hosted in cloud environments the main goal of the scheduling is to
maximize the profit by providing timely services [52].

The analysis of the state of the art presented in this section has shown
that workload scheduling in the clouds is a very important research field.
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Although there are numerous studies on workload scheduling on parallel and
distributed systems, few papers address real cloud environments, and even
fewer cloud workload management systems. Nevertheless, all these topics
need further investigation.

7 Workload failures

As described in the previous sections, workloads typically consist of diverse
applications with different priorities and deadlines that reflect the user re-
quirements. Unforeseen workload behaviors or incompatibility between work-
load requirements and the resources offered in the clouds result in failures.
Increasing functionality and complexity of cloud environments are leading to
inevitable failures that can be caused by different types of events, such as
outage, vulnerability and automatic updates [32]. Other examples of failures
are: software crashes due to hidden bugs, out of memory exceptions due to
the lack of resources, denial of service due to malicious activities, deadline
violations due to unexpected processing delays. There are also failures caused
by unknown events.

A decrease in the reliability associated with the workload does not neces-
sarily mean that the applications are not successfully completed because of
bugs. The failure rate often depends on the workload intensity and mixes.
In particular, heavy load conditions are often responsible of the increase of
the overall failure rate. All failures and in particular deadlines violations are
crucial in cloud environments because of their negative impact on QoS and
SLA. Hence, whenever a SLA has been established between a cloud provider
and a cloud user, various strategies, such as replication and checkpointing,
have to be deployed in order to cope with failures.

In the literature (see Table 2 for an overview) cloud failures have been
addressed under two different perspectives, namely:

• Failure analysis.
• Failure prediction.

In particular, to prevent wasting resources, avoid performance degradation
and reduce costs and energy consumption, in the last years, extensive re-
search has focused on failure analysis. Failures are characterized using dif-
ferent statistical and analytical techniques focused on resource usage (e.g.,
CPU, memory, disk I/O, bandwidth) and on other workload qualitative at-
tributes (e.g., priority, termination status). The basis of these analyses is
often represented by the large variety of workload information collected in
cloud production environments (see Sect. 3). For example, the analysis of the
Google tracelog presented in [34] focuses on the characteristics of failures of
cloud workloads. This empirical study considers the failure and repair times,
and, in particular, two important metrics, namely:
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• Mean Time Between Failure (MTBF).
• Mean Time To Repair (MTTR).

More specifically, the statistical properties of these metrics together with the
theoretical distributions that best fit the empirical data (e.g., Weibull, lognor-
mal) are the basis for characterizing the behavior of the failures. The study
shows that, in general, the workload failure rates vary significantly and de-
pend on the priority associated with the individual tasks, thus reflecting the
diversity in the workload characteristics. The Google tracelog is also analyzed
in [18] to evaluate the effects exercised on failures by workload attributes,
such as job and task resource usage, task resubmission for single and multi-
ple task jobs and termination statuses. In addition, the study investigates the
relationships between user behavior and failures. Clustering techniques have
been applied to identify groups of users submitting jobs with similar charac-
teristics and termination status, thus exhibiting similar reliability properties.
Transient failures associated with scientific workflows are investigated in [17]
by modeling failure interarrival times and system overheads.

Reference Target Failure type Parameters Modeling

Approach

Garraghan et

al. [34]

Google tracelog Task and

server

Failure and repair

times and task
termination status

Probabilistic

Chen et al. [18] Google tracelog Job and task Job and task

attributes

Statistical

and
probabilistic

Chen et al. [17] Scientific

workflows

Transient Task runtime and

failure interarrival
time

Probabilistic

Di Martino et

al. [26]

Cloud data Operational Failure rate and

MTBF

Probabilistic

Chen et al. [19] Google tracelog Job and task Resource usage, task

priority and

resubmission

Machine

learning

Samak et al.
[73]

Scientific
workflows

Job VM attributes Machine
learning

Bala and

Chana [8]

Scientific

workflows

Task Resource utilizations Machine

learning

Table 2 Summary of the state of the art in the field of cloud failure analysis and prediction.

References are ordered as they appear in the text.

Failed jobs typically consume a significant amount of resources. Hence,
it is crucial to mitigate their negative impact by predicting failures in a
timely manner. In [26] the operational failures of a business data processing
platform are characterized to estimate common failure types, their rates and
relationships with the workload intensity and data volume. In addition, a
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trend analysis is performed to assess whether failure arrivals significantly
change over time.

Failure prediction usually relies on machine learning techniques, such as
Naive Bayes, Random Forest, and Artificial Neural Networks. In particular,
Recurrent Neural Networks are applied in [19] to predict the failures of jobs
and tasks by analyzing their resource usages. In the framework of large scale
scientific applications represented as workflows, Naive Bayes classifiers are
used to study the behavior of jobs and predict their failure probability [73].
Similarly, failure prediction models for tasks in workflow applications are
proposed in [8]. These models rely on various machine learning approaches
and are the basis of proactive fault tolerant strategies for failure prediction to
be used for the identification of tasks that could fail due to the overutilization
of resources (e.g., CPU, storage).

A special category of failures is related to software aging. The presence of
these failures is manifested as either an increase in their rate or in perfor-
mance and QoS degradations. Typical causes of software aging failures are
elusive bugs, such as memory leaks, unterminated threads and unreleased
locks. The effects of these bugs usually become evident whenever peaks and
bursts appear in the workload. A common solution to cope with these prob-
lems is represented by software rejuvenation, that is, a cost-effective software
maintenance technique based on preventive rollbacks of continuously run-
ning applications. A recent survey [2] presents an interesting classification of
the most common approaches used in this framework (see Fig. 6). A detailed

Rejuvenation strategies

Time-based approaches Inspection-based approaches

Prediction-based approachesThreshold-based approaches

Fig. 6 Classification of the main rejuvenation strategies.

overview of the analysis techniques proposed in the literature for software ag-
ing and rejuvenation (e.g., stochastic processes, time series analysis, machine
learning) is offered in [23]. In particular, in cloud environments, software
rejuvenation can be applied to either individual VMs and to the hypervi-
sor. Techniques based on live VM migrations and checkpointing are often
exploited to reduce downtimes due to failures [12]. Similarly, to reduce the
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downtime during the rejuvenation, time series approaches are used to pre-
dict the proper time to trigger the process [3]. In detail, to guarantee a safe
scheduling of rejuvenation actions, the resource-aware rejuvenation policy in-
troduced in the paper considers multiple thresholds referring to the resource
usages (e.g., virtual memory).

Despite the effort already put in the domain of cloud failure analysis and
prediction, some open challenges remain to be investigated. In particular, to
improve workload reliability in the clouds, failure awareness resource provi-
sioning and integration of failure prediction mechanisms in the schedulers
should be devised.

8 Conclusions

A deep understanding of workload properties and behavior is essential for
an effective deployment of cloud technologies and for achieving the desired
service levels. In this chapter we discussed the main issues related to the
entire lifecycle of the workloads in the clouds, starting with their charac-
terization at the design time (i.e., workload categories, structures and pat-
terns), their matching at the deployment phase (i.e., resource requirements
and scheduling) and the issues in the execution phase (i.e., failure analysis
and prediction).

The list of topics and issues related to cloud workloads presented in this
chapter does not pretend to be exhaustive. However, the snapshot of the state
of the art gathers in one place the pointers to many different approaches and
can be therefore seen as a starting point in the design of a comprehensive
framework dealing with all stages of the workload lifecycle. In particular, the
analysis of the literature suggests some interesting research challenges dealing
with the design and the development of:

• Portable frameworks for workload monitoring and profiling.
• Systematic approaches towards workload characterization to be exploited

in resource management strategies.
• Management systems for workload scheduling in real cloud environments

that address the heterogeneity and variability in the resource requirements.
• Failure-aware resource provisioning and scheduling mechanisms that im-

prove workload reliability.

Finally, a major issue faced by the research in cloud environments is
the lack of publicly available large-scale workload measurements. In general,
providers and users are very reluctant to disclose data about their workloads
to avoid leakage of competitive and confidential information. Nevertheless,
the availability of this data would be very beneficial for accelerating cloud
deployments.
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