Performance Debugging of Parallel Programs®

M. Calzarossa, L. Massari, A. Merlo, D. Tessera
Dipartimento di Informatica e Sistemistica
Universita di Pavia

[-27100 PAVIA

A. Malagoli
Department of Astronomy
University of Chicago
CHICAGO, IL 60637

ABSTRACT

The performance of programs executed on parallel systems is influenced by a
large number of factors related to the match between system and program character-
istics. Performance debugging helps in understanding the behavior of the programs.
Possible bottlenecks and unbalanced work distributions among the processors are
identified. The portions of the code which lead to poor performance can then be
modified and optimized. Performance debugging techniques are applied in a case
study, where a real application solving a turbulence flow problem is considered.

1 Introduction

Performance evaluation of a computer system is a basic component to be taken into account
in many studies involving its design, configuration and tuning. In particular, the execution of
programs on parallel environments reveals a non—deterministic behavior, in that it depends not
only on its structure, but also on the interactions of various hardware and software components.
The programming paradigm and language adopted, the code optimizations achieved by means
of specialized compilers, the interconnecting topology of the system and the scheduling policies
are a few examples of such components.

Two enhancements to the development of parallel codes have been introduced: parallel ex-
tensions of sequential programming languages (for example, Fortran 90 [ANSI91] and Vienna
Fortran [CMZ91]) and programming environments for multiprocessor and distributed systems
(see e.g., PARADE [PV94], PVM [BDGM91] and p4 [BL92]).

Parallel languages reflect the new programming paradigms adopted for such systems. For ex-
ample, Vienna Fortran is based on the so called SPMD computational model, in which the data
arrays are partitioned and mapped onto different processors which execute the same program

!This work was supported in part by the the Italian Research Council (C.N.R.) “Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo” under grants N. 93.01592.PF69 and N. 94.00409.CT12, by the Italhan M.U.R.S.T.
under the 40% Project and by a NASA Grand Challenge Grant under the HPCC program.

on different data sets. The programmer has to select the most appropriate data distribution.
Based upon these languages, parallelizing compilers have been developed with the effort of
performing code optimization (see e.g., [BCFH93], [CFZ93]).

Message—passing communication libraries, such as, PVM and p4, represent the second approach
towards the development of parallel code. Basically, the programmers have to specify inter-
processor communications in a machine-independent fashion, since the high—level commands
for exploiting the exchange of data are directly mapped onto the corresponding low—level,
machine—dependent system calls.

As a result of the complex interactions of all these components, the evaluation of the per-
formance of parallel programs requires methods and tools that have to be part of an integrated
environment which allows the programmer to observe, analyze, and visualize the behavior of
his program.

Measurements are a widespread approach used in performance debugging activities, that is,
when the program has to be tuned to a given architecture in order to optimize its performance
[LSVC89], [SGI93]. This is generally an iterative procedure, involving measurements as well as
modification of the source code.

Measurements generated and collected by means of monitoring tools need to be analyzed
through statistical techniques, and visualized into graphical forms to highlight significant per-
formance indices. The observation of program behavior requires some sort of tracing, which
captures the events occurred (e.g., wait for a message, beginning of a communication) during
its execution. This tracing activity can generate vast amount of data, creating problems during
the analysis and interpretation phases.

The manipulation of large traces and the creation of graphical representations require automatic
support for their analysis and visualization (see [HE91], [LMF90], [LS92]).

In this paper, a performance debugging study of a real code executed in two parallel envi-

ronments is presented. Starting from measurements obtained from its executions, a study of its
performance has been carried out, for identifying possible problems in obtaining the expected
performance indices.
The paper is organized as follows. Section 2 describes some general issues on the performance
debugging methodologies. Section 3 presents a case study where a real application which solves
a turbulent flow problem is considered. The performance issues related to its execution on two
parallel systems are described with the aim of identifying possible tuning actions. Finally, in
Section 4 future developments are outlined.

2 Performance Debugging Techniques

It is known that the performance of the programs processed by parallel systems is much more
critical than by traditional ones. It is difficult to obtain good predictions of the performance
of the programs prior to their execution because the architectural components of parallel sys-
tems may play some unpredictable roles. The identification of possible bottlenecks and of
“unbalanced” work distributions among the processors is almost impossible before running the
program.

Profiling of the source code on sequential systems provides preliminary insights into the
composition of the program in terms of the relative weights of its components (e.g., sub-
routines, functions, procedures). Hints about possible parallelization strategies (e.g., optimal
number of processors, data distributions) can be derived. Two major drawbacks are associated
to profiling. Such technique is not always applicable in practice because of the prohibitive
computation time and memory requirements of real applications which make impossible their
execution on uniprocessor systems. In general, some rough information may be extrapolated
by profiling small portions of the source code. Furthermore, there is a complete lack of any
details concerning the communication and the synchronization patterns.

Hence, performance debugging techniques need to be applied for understanding and ex-
plaining the behavior of the program with the aim of improving its performance. Indeed, the
execution times of the programs have to be optimized, since they are usually executed many
times. Even small savings in their elapsed time, after a few runs aimed at measuring the per-
formance, are very important. The inherent parallelism of the code has to be exploited and the
delays due to message exchanges among the processors and synchronization constraints have to
be reduced. A trade-off between computation and communication activities has to be reached.

Performance debugging requires various phases including a tracing of the source code and
the analysis of a large amount of raw data produced at run-time by the monitoring tools. As
already pointed out, such procedure is iterative in that “optimal” program performance can be
achieved by successive modifications and refinements of the code itself. Figure 1 summarizes
the various phases required by a performance debugging methodology.

source code

instrumented code

execution
measurements

performance
analysis & visualization

identification of
"critical points"

tuning and optimization

Figure 1: Phases of a performance debugging methodology.

Once the source code has been manually or automatically instrumented and the program
has been executed on a parallel system, a post-processing of the collected measurements has
to be applied. Such phase makes the data more manageable and easily understandable by the
programmer who is the main responsible of the tuning actions aimed at improving program
performance.

From the events stored during the program tracing, performance metrics and statistical
indices are derived [CS93]. Execution, computation and communication profiles represent, as
a function of the elapsed time, the number of processors which are simultaneously “active”,
computing or communicating, respectively. Such profiles are suitable for discovering phases in
the program by showing how the execution evolves over time. For example, particular commu-
nication patterns and synchronization barriers which may be responsible of poor performance
are easily identified by applying visualization techniques. Such techniques provide an intuitive
description of the analyzed phenomenon. Then, in the case of SPMD programming paradigm,
the most suitable data distribution can be derived. In the case of functional parallelism, an
appropriate distribution of the program among the available processors is obtained.

Parameters, such as, speedup, efficiency, eflicacy and processor working set
[EZL89], [GSTI1], are computed when measurements of various runs of the program with
different number of processors are available. Such parameters, which describe the behavior of
the program with respect to its parallelism, provide information about the optimal number of
processors to be used.

Statistical techniques can also be applied for the characterization of the measurements.
Basic statistics, such as, means and standard deviations, help in discovering variabilities which
may be a synonym of unbalanced conditions due to uneven work or data distributions.

Similarities in the measurements are discovered by applying clustering techniques. For
example, a subdivision of the communication activities, e.g., send, receive, with respect to
their parameters, e.g., number of bytes transferred, communication time, is very useful for
identifying portions of the code characterized by “irregular” communication patterns where
the tuning actions have to be focused. A better understanding of the program behavior is
also achieved by applying, to the obtained clusters, a functional description with the aim of
analyzing their composition with respect to the activities performed.

More detailed information are also obtained by subdividing and analyzing the communica-
tions according to their types, e.g., blocking versus non-blocking, send versus receive commu-
nications. Indeed, each type may exhibit different impact on the program performance.

An application of the various techniques of the performance debugging which allow the
identification of portions of code where tuning and optimization activities have to be focused,
is presented in the next section.

3 Case Study

In this section the methodology previously introduced is applied to a case study where a
real code, solving a turbulent flow problem is executed, with different sizes, on two parallel
systems. Before presenting the details of the case study and discussing the performance results

obtained, brief descriptions of the analyzed code of the programming environment and of the
system architectures are provided.

3.1 Turbulent Flow Problem

The code analyzed, developed at the University of Chicago in collaboration with the Argonne
National Laboratory, solves the turbulent convection and mixing in highly stratified, compress-
ible plasmas. These kinds of study are the most computationally intensive in today’s real life
applications. Many efforts have been spent in order to exploit parallel computing resources on
it.

The code under test uses finite difference methods and domain decomposition techniques
for solving the flow model equations on massively parallel systems. Domain decomposition
techniques are based on the idea of splitting the physical domain of the problem into smaller
subdomains and to solve each subproblem on a processing node. This approach, together with
the use of finite difference discretization methods, requires almost entirely nearest neighbourgh
communications between processors. Therefore, it can be expected that under suitable cir-
cumstances good computation versus communication ratios, which are well suited for parallel
systems, will be achieved.

The code solves the equations of compressible fluid dynamics with the inclusion of an
external gravitational force g and a temperature dependent thermal conduction.

A mathematical model of the problem, which takes care of the conservation laws and the
Fourier equation, is shown below:

Op+V-pu = 0

&gpu + V- put = —-VP + gpz + Qvisc

D+ u- VT + (7= TV -u = p(lj V- (B(T)VT)] 4 Hose

v

where p, u and T are the density, the velocity and the temperature of the gas, respectively;
~ is the ratio of specific heats and (', is the heat capacity at constant volume; (), ;s. and H ;s
represent the rates of viscous momentum dissipation and viscous heating, respectively.

Mathematically speaking, the equations without the right—hand side of the energy equation
form a system of hyperbolic equations, which can be solved with very robust algorithms based
on higher-order Godunov methods. One such method, which is also used in our program, is
the Piecewise Parabolic Method (PPM) of Colella and Woodward. The thermal conduction
operator on the right-hand side of the last equation requires the solution of a nonlinear elliptic
equation, for which a Crank—Nicholson implicit scheme and a multigrid method have been used.

The main phases identified in the program can be summarized as follows:

- initialization of the source term for the equation of heat transfer;

- solution of the Riemann shock tube problem and time advancement of the fluid variables
with the higher-order Godunov method;

- solution of the non linear heat-conduction equation with the multigrid solver using the
temperatures computed by the Godunov method;

- dumping of the physical variables of the model.

More details on physical and mathematical descriptions of the problem can be found in
[DMCL94]. In what follows the various phases of the program are briefly presented with the
objective of pointing out their performance aspects.

In general, finite difference operators can be thought of as having a stencil which determines
the domain of dependency of one grid point from its nearest neighbors. The number of nearest
neighboring points required depends on the details of the numerical scheme, but it is usually
limited to a few. Boundary conditions are implemented by adding extra arrays of “ghost” points
around the boundaries of the physical mesh. The mapping of a physical grid on more than one
processor requires some form of domain decomposition, where each subdomain can be mapped
on one processor. Fach subdomain has its own ghost points, where the edge points from one
subdomain are copied into the ghost points of the adjacent subdomain. Each processor takes
care of a portion of the global domain and solves the equations only on it.

The PPM method used for the fluid motion requires the exchange of the neighbor points
two times, one after sweeping the z direction and the other after sweeping the y direction on
each solution step. In order to ensure the stability of the scheme a global maximum is also
required to adjust the time step length according to the Courant Friedrichs Lewys condition.

The multigrid algorithm has two different sections. The first one, similar to the finite
difference algorithm, uses a domain decomposition technique. For each relaxation step, at
each level, the ghost points are updated. The second section begins when the grid size at
each processor becomes too small. This means that the update of ghost points becomes more
expensive than the computation. Then, a global collection of all the subdomains is performed,
and a copy of the complete grid is provided to all the processors. If the number of processors
is large enough, then the collected grid is likely to be too large to be solved exactly, and
a sequential multigrid is started on each node until the lowest level is reached. Since this
operation is performed redundantly (but concurrently) on each node, there is no further need
to redistribute the solution back to the nodes.

The dumping of the physical variables is a very I/O intensive step which requires a global
synchronization of all the processors in order to make a single ordered output stream by col-
lecting the data scattered on each node. This phase requires big amount of storage space since
at every solution step several megabytes of data need to be stored. For example, a problem of
1024 x 1024 dumps 18Mbytes of data at every step.

An example of the physical results obtained by executing our application is shown in Figure
2, where the dynamics of turbulent mixing on astrophysics on a 1024 x 512 problem are
presented.

The figure shows the temperature fluctuations in a layer of unstable, turbulent gas (upper
half) convecting onto a layer of stable gas (lower half). Thermal plumes inpinging onto the
lower layer generate gravity waves, which cause the gas to mix also in the lower, convectively
stable region. This process of convective penetration plays a fundamental role for the structure

Figure 2: Temperature fluctuations on a 1024 x 512 problem

and evolution of stellar interiors.

3.2 Test Environment

The test program considered in our study is a Fortran code which employes the Chameleon
library [GS93] for handling the communications among the processors. The dumping routines
and the dynamic memory allocation functions are performed by C language procedures. The
parallelism is exploited by means of a SPMD programming paradigm.

The choice of the Chameleon library is related to its portability and scalability features.
It is known that message—passing represents a common framework for programming parallel
systems. Unfortunately, even if a standard Message-Passing Interface (MPI) has been recently
proposed, a number of different (and often incompatible) communication libraries are available,
each with its own strengths and weaknesses.

Chameleon implements a collection of routines aimed at providing a consistent and easy—to—
use communication paradigm and supports both native communication libraries (e.g., Intel NX
and IBM EUI) and several highly portable packages, such as, PVM [BDGM91], PICL [Worl90],
and p4 [BL92].

Chameleon, together with the BlockComm library [Grop94], ensures efficient data com-
munications between processors. Various types of communications, such as, nonblocking and
ordered blocking send and receive, can be selected within the BlockComm. Rather than viewing
each communication among elements of a distributed data structure as a separate operation,
BlockComm implements aggregate operations for dynamically managing the exchange of blocks
of data between processors.

In order to aid the debugging and performance evaluation activities, Chameleon provides
the possibility of collecting detailed information on the behavior of parallel programs by means
of event monitoring. In our case, such feature has been used for tracing the program execution
and obtaining measurements on two different multiprocessor architectures, namely, an IBM

Spl of Argonne National Laboratory and an Intel Paragon XP/S of IRISA, where our program
has been tested.

The IBM Spl is a high—performance switch—connected cluster of RS/6000 workstations
configured with 128 nodes and two compiler servers, used for dispatching the programs being
executed. Fach node has 128 Mbytes of main memory and 1 Gbyte local disk. Nodes exchange
data by means of an Omega network.

The Intel Paragon XP/S is a distributed—memory, wormhole-routed, mesh—connected par-
allel system configured with 56 computing nodes. Each node is equipped with two Intel i860
processors, namely, a Message CoProcessor for communication handling and a Computing Pro-

cessor, and 16 Mbytes of main memory. Access to network interfaces and disks are transparently
provided by dedicated 1/0O nodes.

3.3 Experimental Results

In order to understand how our program behaves and to discover the most computation inten-
sive components of the code, a profiling of the program has been performed. The weight of
each component (i.e., routine) has been obtained by executing the application on a sequential
system.

Note that the code profiling depends on the problem size, since the program uses an iterative
method, that is, the relaxed solver encapsulated in the multigrid code.

For the sake of simplicity, unless otherwise stated, we will present the results of our perfor-
mance debugging study for a problem of size 512x256.

Figure 3 shows the results of our profiling activity. The percentage of the time spent by
the program in each routine is plotted in Fig. 3 (a). Since performance debugging is aimed
at helping the programmer in identifying the portions of code to be modified, the diagram
presents only the routines which are part of it. Hence, system library functions, such as, log,
exp, which account for about the 21% of the total time, have not been plotted. In the figure,
the 17 “heaviest” routines, which contribute for about 67.4% of the total execution time, plus
the remaining routines, denoted as “others”, which accounts for about 11.6%, have been shown.

Another parameter derived by the profiling is the number of calls to each routine (see

Fig. 3(b)). Such parameter together with the percentage of time consumed gives a more pre-
cise description of the weights of the various program components. As can be seen from Fig. 3,
the “heaviest” routine is the sweep, which accounts for about 14% of the time. However, such
routine has a call percentage of only 0.2%. Hence, the sweep routine is characterized by 527.3
ms/call. On the other side, the interp routine, which is characterized by a large number of
calls, takes 1.81 ms/call. In performance debugging studies, a trade-off exists between all these
performance measures.
In parallel environments there are different approaches to achieve better performance. When-
ever possible, a divide and conquer methodology is applied to the components with the largest
time per call. This is the case of our application. An alternative approach is based on the
redistribution of the routine calls according to their number and their time per call.

After the sequential profiling, various experiments performed on the two parallel systems
above described have been carried out. The program has been executed under different condi-

sweep

riemann] —

states] —

exec_array

flluid_driver

interp

monot

iniect_r

u2var

intrfc

coeff

flaten

iniect

var2u

init_heat

prolong

)

oper

others]

8 10 4 % 0 5 10 15 20 25 %

S}
s
o

(a) (b)

Figure 3: Percentages of the time spent by each component (a) and of the number of calls (b)
obtained by profiling the program on a sequential system.

tions, namely, varying the number of allocated processors, the problem size, the communication
types and the number of dumping phases. As already pointed out, the execution and commu-
nication activities have been monitored by means of the Chameleon facilities. The overhead
due to the tracing activities accounts less than 1% of the program elapsed time.
Then, the collected measurements have been analyzed by MEDEA, a software tool developed
at the University of Pavia for the analysis and visualization of the performance of parallel
programs [CMMP94].

The objective of our study was to identify possible sources of poor performance within the
code itself and as a function of the underlying architecture.

The problem has been executed on the Paragon with number of processors ranging from 1
to 32. Note that due to the domain decomposition technique adopted, such number has to be a
power of two. The execution time of our problem is equal to 36 minutes on one processor. The
speedup is linear up to 8 processors, then it goes down because the communication times become
larger, while the computation times are reduced. Hence, a loss in performance results. Figure 4
shows the speedup curve for a 512x256 problem. As can be seen, there is a sharp decrease when
the number of processors is increased from 8 to 16. Such phenomenon has less influence on the
execution time of larger size problems. For example, the times of a 1024x 1024 grid are 5 hours
and 50 minutes and 3 hours and 57 minutes on 16 and 32 processors, respectively. Indeed,

in such cases, the subdomains solved by each processor are equal to 256x256 and 256 x 128,
respectively.

speedup

I I I

o
[y
~
©

16 32
of processors
Figure 4: Speedup curve for a 512x256 problem executed with variable number of processors
on the Paragon.

The same problem has also been executed on the Spl. In such a case, due to the architectural
characteristics of the system and of its interconnection network, a speedup decrease is noticed
with a larger number of processors (i.e., 64). This is also because of the poor communication
versus computation ratios.

Figures 5 and 6 represent the communication profiles for our problem executed on four
processors of the Paragon, with blocking and non-blocking communications, respectively.

4 of proc.

4

2 I L

000 23590 47360
tine [secl

Figure 5: Communication profile of a 512x256 problem on a four processor partition of the
Paragon with blocking communications.

As can be seen, there are communication patterns between the processors. Groups of
communications repeated 10 times, one for each solution time step, are identified. It can also
be noticed that there are a few asymmetries in the processor timings. It is likely to find three
processors in a communication phase waiting for the fourth one. This phenomenon is better

10

4 of prac.

4

o
]

a [

0.00 234.54 459.08
tine [secl

Figure 6: Communication profile of a 512x256 problem on a four processor partition of the
Paragon with non-blocking communications.

displayed in Fig. 7 where a zooming of the diagram of Fig. 5 is shown.

+ of proc.

U

B
tine Caesl

Figure 7: Zooming of the communication profile of Fig. 5.

A zoomimg over one phase of the communication profile obtained on the Spl is presented

in Figure 8.

Figure 8: Zooming of one phase of the communication profile obtained on the Spl.

After the visualization of the program performance, the communications activities have
also been analyzed by means of statistical techniques in order to discover irregular patterns
and similarities. Mean values together with standard deviations and distributions of the times
spent by the various communication events have been computed. For example, the average and

11

the standard deviation are equal to 1.88 ms and 56.6 ms, respectively.

We then focused on on the activities performed by each processor. In particular, a com-
munication event has been described by the time spent per processor, that is, as a point in
a p—dimensional space, where p is the number of allocated processors. In Table 3.3 basic
statistics obtained on a eight processor partition of the Paragon are presented. Unbalanced
conditions have been found. Even and odd numbered processors have very similar behavior
between each other. This is related to the concept of processor “leader” adopted in the code.
There are processors which are also responsible of coordinating the activities of a few other

processors.
Processor | Average | St. Dev. | Min | Max

1 0.378 5.675 0.015 | 465.160
2 2.293 61.171 0.015 | 5612.889
3 1.882 33.423 0.015 | 2111.845
4 2.492 60.789 0.015 | 5612.873
5 1.756 32.774 0.015 | 2111.911
6 2.366 60.439 0.015 | 5612.918
7 1.644 33.066 0.015 | 2111.901
8 2.262 60.601 0.016 | 5612.920

Table 1: Basic statistics of the communication times over four processors of the Paragon. The
times are expressed in ms.

The correlations among the times spent by each processor have also been derived. There
are no correlations between processor leaders, which are responsible of the coordination of a
few other processors. Indeed, such an activity leads to unbalanced timings and delays in the
program execution. High positive correlations are found between non-leader processors.

The clustering, applied to the 12606 communication events collected on eight processors and
represented in a eight-dimensional space, yields a subdivision into two groups characterized by
different parameters, i.e., communication times. The two groups are very unbalanced either
with respect to the number of events and to their times. The first cluster contains the most
part of the events which are very similar between each other. For example, the averages of the
communication times for processors 5 and 6 are equal to 0.81 ms and 0.96 ms, respectively. In
order to obtain a better understanding of the composition of this big group, cluster analysis has
been applied once more on it. The new results enforce the previous ones. No better subdivisions
have been obtained.

The second group is very small and contains just the 0.26% of the events whose times
are two orders of magnitude larger than the global averages. Such events refer to particular
communications where the processors have to wait for each other. The functional description
of this cluster supports these conclusions. In Figure 9 the distribution of communication types
belonging to this cluster is shown. As can be seen, there are only three different types, namely,
Wait_Receive, Global_Min, Sync. Note that the Sync events are related to the dumping phase
of the code.

The dumping activities have a large influence on the program performance. For example,
for the 512x256 problem, the global size of the dumping of the physical variables at each

12

B63.6% HRECY
M27.3% GHIN
B 9.1% SYNC

Figure 9: Functional description of the cluster analysis applied to measurements collected on
eight processors with a non-blocking communication paradigm.

program step, that is, ten times, is about 25 Mbytes. The overhead due to such operations,
e.g., I/O time plus time spent for contentions on system resources, accounts for more than 31%
of the global elapsed time, that is, 98 seconds on an eight processor partition of the Paragon.
Indeed, the transfer of large amounts of data is a critical factor for the interconnection network
of the parallel systems, especially in the case of message passing architectures. This heavy
data flow consumes resources on the intermediate processors because of the routing handling.
Even in architectures with dedicated communication processors, such as the Intel Paragon, the
I/O activities require the allocation and the use of communication buffers, which steal main
memory to the computation processors. Furthermore, a slow down of the local communications
between the processors may be introduced with consequent performance degradations due to
synchronizations.

It is important to notice that dumping phases are an integral part of the analyzed application.
They catch snapshots of each computation step and can be used as an archive as well as for
restarting the computation at intermediate steps.

Acknowledgments

The authors would like to thank TAN-CNR for the use of a SUN SC-21002 where all the
sequential profiling of the code has been performed. Special thanks go to IRISA (France) for
making possible the experimental part of the paper by providing the access to the Paragon
system. Authors gratefully acknowledge use of the Argonne High-Performance Computing
Research Facility, funded principally by the U.S. Department of Energy Office of Scientific
Computing.

13

References

[ANSIO1]

[BCFHO3]

[BDGMO1]

[BL92]

[CFZ93]

[CMMP94]

[CMZ91]

[CS93]

[DMCL94]

[EZL89]

[Grop94]

[GS93]

[GSTO1]

Fortran 90. X3j3 internal document s8.118, American National Standard Institute,
May 1991.

7. Bozkus, Choudhary A., G. Fox, T. Haupt, and S. Ranka. A Compilation Ap-
proach for Fortran 90D /HPF Compilers. In Banerjee U., D. Gelernter, A. Nicolau,
and D. Padua, editors, Proc. of the 6th International Workshop on Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, pages 200—
215. Springer—Verlag, August 1993.

A. Beguelin, J. Dongarra, G. A. Geist, R. Manchek, and V. Sunderam. A User’s
Guide to PVM: Parallel Virtual Machine. Technical Report ORNL/TM-11826,
Oak Ridge National Laboratory, 1991.

R. Butler and E. Lusk. User’s Guide to the p4 Parallel Programming System.
Technical Report ANL-92/17, Argonne National Laboratory, 1992.

B.M. Chapman, T. Fahringer, and H. Zima. Automatic Support for Data Dis-
tribution on Distributed Memory Multiprocessor Systems. In Proc. Sizth Annual
Workshop on Language and Compilers for Parallel Computing, Lecture Notes on
Computer Systems, Portland, 1993. Springer Verlag.

M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. MEDEA: A
Tool for Workload Characterization of Parallel Systems. (in preparation), 1994.

B. M. Chapman, P. Mehrotra, and H. P. Zima. Vienna Fortran — A Fortran Lan-
guage Fxtension for Distributed Memory Multiprocessors. Compilers and Runtime
Software for Scalable Multiprocessors. Elsevier, 1991.

M. Calzarossa and G. Serazzi. Workload Characterization: A Survey. Proc. of the
IFFEFE, 81(8):1136-1150, 1993.

A. Dubey, A. Malagoli, F. Cattaneo, and Levine D. Portable and Efficient Parallel
Algorithms for Compressible Hidrodynamics. (in preparation), 1994.

D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup Versus Efficiency in Parallel
Systems. IEFFE Trans. on Computers, 38(3):408-423, 1989.

W. Gropp. BlockComm: Data Exchange on Parallel Computers. Argonne National
Laboratory, June 1994.

W. Gropp and B. Smith. User’s manual for the chameleon programming tools.
Technical report, Argonne National Laboratory, 1993.

D. Ghosal, G. Serazzi, and S.K. Tripathi. The Processor Working Set and its
Use in Scheduling Multiprocessor Systems. IEFE Trans. on Software Fngineering,
17(5):443-453, 1991.

14

[HE91]

[LMF90]

[LSVC89]

[LS92]

[PV94]

[5G93]

[Worl90]

M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs.
IEFEFE Software, 8:29-39, 1991.

T.J. LeBlanc, J.M. Mellor-Crummey, and R.J. Fowler. Analyzing Parallel Program
Executions Using Multiple Views. Journal of Parallel and Distributed Computing,
9(6):203-217, 1990.

T. Lehr, 7. Segall, D.F. Vrsalovic, E. Caplan, A.L. Chung, and C.E. Fineman.
Visualizing Performance Debugging. IFFEE Computer, pages 3851, October 1989.

Lenzi P. and Serazzi G. PARMON: Parallel Monitor - Release 1.0. Technical
Report CNR Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo n. 3/95,
1992.

E. Pozzetti and V. Vetland. Parallel Programming with PARADE. In Proc. Annual
Conference AICA, 1994.

S. R. Sarukkai and D. Gannon. SIEVE: A Performance Debugging Environment
for Parallel Programs. Journal of Parallel and Distributed Computing, 18:147-168,
1993.

P. H. Worley. A New PICL Trace File Format. Technical Report ORNL/TM-
12125, Oak Ridge National Laboratory, 1992.

15

