
Performance Debugging of Parallel Programs�

M� Calzarossa� L� Massari� A� Merlo� D� Tessera

Dipartimento di Informatica e Sistemistica
Universit�a di Pavia
I������ PAVIA

A� Malagoli

Department of Astronomy
University of Chicago
CHICAGO� IL 	�	
�

ABSTRACT

The performance of programs executed on parallel systems is in�uenced by a
large number of factors related to the match between system and program character�
istics� Performance debugging helps in understanding the behavior of the programs�
Possible bottlenecks and unbalanced work distributions among the processors are
identi
ed� The portions of the code which lead to poor performance can then be
modi
ed and optimized� Performance debugging techniques are applied in a case
study� where a real application solving a turbulence �ow problem is considered�

� Introduction

Performance evaluation of a computer system is a basic component to be taken into account

in many studies involving its design� con
guration and tuning� In particular� the execution of

programs on parallel environments reveals a non�deterministic behavior� in that it depends not

only on its structure� but also on the interactions of various hardware and software components�

The programming paradigm and language adopted� the code optimizations achieved by means

of specialized compilers� the interconnecting topology of the system and the scheduling policies

are a few examples of such components�

Two enhancements to the development of parallel codes have been introduced� parallel ex�

tensions of sequential programming languages �for example� Fortran �� �ANSI��� and Vienna

Fortran �CMZ���� and programming environments for multiprocessor and distributed systems

�see e�g�� PARADE �PV���� PVM �BDGM��� and p� �BL�����

Parallel languages re�ect the new programming paradigms adopted for such systems� For ex�

ample� Vienna Fortran is based on the so called SPMD computational model� in which the data

arrays are partitioned and mapped onto di�erent processors which execute the same program

�This work was supported in part by the the Italian Research Council �C�N�R�� �Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo� under grants N� ���	
����PF
� and N� ���		�	��CT
�� by the Italian M�U�R�S�T�
under the �	� Project and by a NASA Grand Challenge Grant under the HPCC program�

�

on di�erent data sets� The programmer has to select the most appropriate data distribution�

Based upon these languages� parallelizing compilers have been developed with the e�ort of

performing code optimization �see e�g�� �BCFH�
�� �CFZ�
���

Message�passing communication libraries� such as� PVM and p�� represent the second approach

towards the development of parallel code� Basically� the programmers have to specify inter�

processor communications in a machine�independent fashion� since the high�level commands

for exploiting the exchange of data are directly mapped onto the corresponding low�level�

machine�dependent system calls�

As a result of the complex interactions of all these components� the evaluation of the per�

formance of parallel programs requires methods and tools that have to be part of an integrated

environment which allows the programmer to observe� analyze� and visualize the behavior of

his program�

Measurements are a widespread approach used in performance debugging activities� that is�

when the program has to be tuned to a given architecture in order to optimize its performance

�LSVC���� �SG�
�� This is generally an iterative procedure� involving measurements as well as

modi
cation of the source code�

Measurements generated and collected by means of monitoring tools need to be analyzed

through statistical techniques� and visualized into graphical forms to highlight signi
cant per�

formance indices� The observation of program behavior requires some sort of tracing� which

captures the events occurred �e�g�� wait for a message� beginning of a communication� during

its execution� This tracing activity can generate vast amount of data� creating problems during

the analysis and interpretation phases�

The manipulation of large traces and the creation of graphical representations require automatic

support for their analysis and visualization �see �HE���� �LMF���� �LS�����

In this paper� a performance debugging study of a real code executed in two parallel envi�

ronments is presented� Starting from measurements obtained from its executions� a study of its

performance has been carried out� for identifying possible problems in obtaining the expected

performance indices�

The paper is organized as follows� Section � describes some general issues on the performance

debugging methodologies� Section
 presents a case study where a real application which solves

a turbulent �ow problem is considered� The performance issues related to its execution on two

parallel systems are described with the aim of identifying possible tuning actions� Finally� in

Section � future developments are outlined�

� Performance Debugging Techniques

It is known that the performance of the programs processed by parallel systems is much more

critical than by traditional ones� It is di�cult to obtain good predictions of the performance

of the programs prior to their execution because the architectural components of parallel sys�

tems may play some unpredictable roles� The identi
cation of possible bottlenecks and of

�unbalanced� work distributions among the processors is almost impossible before running the

program�

�

Pro
ling of the source code on sequential systems provides preliminary insights into the

composition of the program in terms of the relative weights of its components �e�g�� sub�

routines� functions� procedures�� Hints about possible parallelization strategies �e�g�� optimal

number of processors� data distributions� can be derived� Two major drawbacks are associated

to pro
ling� Such technique is not always applicable in practice because of the prohibitive

computation time and memory requirements of real applications which make impossible their

execution on uniprocessor systems� In general� some rough information may be extrapolated

by pro
ling small portions of the source code� Furthermore� there is a complete lack of any

details concerning the communication and the synchronization patterns�

Hence� performance debugging techniques need to be applied for understanding and ex�

plaining the behavior of the program with the aim of improving its performance� Indeed� the

execution times of the programs have to be optimized� since they are usually executed many

times� Even small savings in their elapsed time� after a few runs aimed at measuring the per�

formance� are very important� The inherent parallelism of the code has to be exploited and the

delays due to message exchanges among the processors and synchronization constraints have to

be reduced� A trade�o� between computation and communication activities has to be reached�

Performance debugging requires various phases including a tracing of the source code and

the analysis of a large amount of raw data produced at run�time by the monitoring tools� As

already pointed out� such procedure is iterative in that �optimal� program performance can be

achieved by successive modi
cations and re
nements of the code itself� Figure � summarizes

the various phases required by a performance debugging methodology�

"critical points"

identification of

tuning and optimization

measurements

execution

instrumented code

source code

performance

analysis & visualization

Figure �� Phases of a performance debugging methodology�

Once the source code has been manually or automatically instrumented and the program

has been executed on a parallel system� a post�processing of the collected measurements has

to be applied� Such phase makes the data more manageable and easily understandable by the

programmer who is the main responsible of the tuning actions aimed at improving program

performance�

From the events stored during the program tracing� performance metrics and statistical

indices are derived �CS�
�� Execution� computation and communication pro
les represent� as

a function of the elapsed time� the number of processors which are simultaneously �active��

computing or communicating� respectively� Such pro
les are suitable for discovering phases in

the program by showing how the execution evolves over time� For example� particular commu�

nication patterns and synchronization barriers which may be responsible of poor performance

are easily identi
ed by applying visualization techniques� Such techniques provide an intuitive

description of the analyzed phenomenon� Then� in the case of SPMD programming paradigm�

the most suitable data distribution can be derived� In the case of functional parallelism� an

appropriate distribution of the program among the available processors is obtained�

Parameters� such as� speedup� e�ciency� e�cacy and processor working set

�EZL���� �GST���� are computed when measurements of various runs of the program with

di�erent number of processors are available� Such parameters� which describe the behavior of

the program with respect to its parallelism� provide information about the optimal number of

processors to be used�

Statistical techniques can also be applied for the characterization of the measurements�

Basic statistics� such as� means and standard deviations� help in discovering variabilities which

may be a synonym of unbalanced conditions due to uneven work or data distributions�

Similarities in the measurements are discovered by applying clustering techniques� For

example� a subdivision of the communication activities� e�g�� send� receive� with respect to

their parameters� e�g�� number of bytes transferred� communication time� is very useful for

identifying portions of the code characterized by �irregular� communication patterns where

the tuning actions have to be focused� A better understanding of the program behavior is

also achieved by applying� to the obtained clusters� a functional description with the aim of

analyzing their composition with respect to the activities performed�

More detailed information are also obtained by subdividing and analyzing the communica�

tions according to their types� e�g�� blocking versus non�blocking� send versus receive commu�

nications� Indeed� each type may exhibit di�erent impact on the program performance�

An application of the various techniques of the performance debugging which allow the

identi
cation of portions of code where tuning and optimization activities have to be focused�

is presented in the next section�

� Case Study

In this section the methodology previously introduced is applied to a case study where a

real code� solving a turbulent �ow problem is executed� with di�erent sizes� on two parallel

systems� Before presenting the details of the case study and discussing the performance results

�

obtained� brief descriptions of the analyzed code of the programming environment and of the

system architectures are provided�

��� Turbulent Flow Problem

The code analyzed� developed at the University of Chicago in collaboration with the Argonne

National Laboratory� solves the turbulent convection and mixing in highly strati
ed� compress�

ible plasmas� These kinds of study are the most computationally intensive in today�s real life

applications� Many e�orts have been spent in order to exploit parallel computing resources on

it�

The code under test uses
nite di�erence methods and domain decomposition techniques

for solving the �ow model equations on massively parallel systems� Domain decomposition

techniques are based on the idea of splitting the physical domain of the problem into smaller

subdomains and to solve each subproblem on a processing node� This approach� together with

the use of
nite di�erence discretization methods� requires almost entirely nearest neighbourgh

communications between processors� Therefore� it can be expected that under suitable cir�

cumstances good computation versus communication ratios� which are well suited for parallel

systems� will be achieved�

The code solves the equations of compressible �uid dynamics with the inclusion of an

external gravitational force g and a temperature dependent thermal conduction�

A mathematical model of the problem� which takes care of the conservation laws and the

Fourier equation� is shown below�

�t��r � �u � �

�t�u�r � �uu � �rP � g�z � Qvisc

�tu� u � rT � �� � ��Tr � u �
�

�Cv

�r � �k�T �rT �� �Hvisc

where �� u and T are the density� the velocity and the temperature of the gas� respectively�

� is the ratio of speci
c heats and Cv is the heat capacity at constant volume� Qvisc and Hvisc

represent the rates of viscous momentum dissipation and viscous heating� respectively�

Mathematically speaking� the equations without the right�hand side of the energy equation

form a system of hyperbolic equations� which can be solved with very robust algorithms based

on higher�order Godunov methods� One such method� which is also used in our program� is

the Piecewise Parabolic Method �PPM� of Colella and Woodward� The thermal conduction

operator on the right�hand side of the last equation requires the solution of a nonlinear elliptic

equation� for which a Crank�Nicholson implicit scheme and a multigrid method have been used�

The main phases identi
ed in the program can be summarized as follows�

� initialization of the source term for the equation of heat transfer�

� solution of the Riemann shock tube problem and time advancement of the �uid variables

with the higher�order Godunov method�

�

� solution of the non linear heat�conduction equation with the multigrid solver using the

temperatures computed by the Godunov method�

� dumping of the physical variables of the model�

More details on physical and mathematical descriptions of the problem can be found in

�DMCL���� In what follows the various phases of the program are brie�y presented with the

objective of pointing out their performance aspects�

In general�
nite di�erence operators can be thought of as having a stencil which determines

the domain of dependency of one grid point from its nearest neighbors� The number of nearest

neighboring points required depends on the details of the numerical scheme� but it is usually

limited to a few� Boundary conditions are implemented by adding extra arrays of �ghost� points

around the boundaries of the physical mesh� The mapping of a physical grid on more than one

processor requires some form of domain decomposition� where each subdomain can be mapped

on one processor� Each subdomain has its own ghost points� where the edge points from one

subdomain are copied into the ghost points of the adjacent subdomain� Each processor takes

care of a portion of the global domain and solves the equations only on it�

The PPM method used for the �uid motion requires the exchange of the neighbor points

two times� one after sweeping the x direction and the other after sweeping the y direction on

each solution step� In order to ensure the stability of the scheme a global maximum is also

required to adjust the time step length according to the Courant Friedrichs Lewys condition�

The multigrid algorithm has two di�erent sections� The
rst one� similar to the
nite

di�erence algorithm� uses a domain decomposition technique� For each relaxation step� at

each level� the ghost points are updated� The second section begins when the grid size at

each processor becomes too small� This means that the update of ghost points becomes more

expensive than the computation� Then� a global collection of all the subdomains is performed�

and a copy of the complete grid is provided to all the processors� If the number of processors

is large enough� then the collected grid is likely to be too large to be solved exactly� and

a sequential multigrid is started on each node until the lowest level is reached� Since this

operation is performed redundantly �but concurrently� on each node� there is no further need

to redistribute the solution back to the nodes�

The dumping of the physical variables is a very I O intensive step which requires a global

synchronization of all the processors in order to make a single ordered output stream by col�

lecting the data scattered on each node� This phase requires big amount of storage space since

at every solution step several megabytes of data need to be stored� For example� a problem of

���� � ���� dumps ��Mbytes of data at every step�

An example of the physical results obtained by executing our application is shown in Figure

�� where the dynamics of turbulent mixing on astrophysics on a ���� � ��� problem are

presented�

The
gure shows the temperature �uctuations in a layer of unstable� turbulent gas �upper

half� convecting onto a layer of stable gas �lower half�� Thermal plumes inpinging onto the

lower layer generate gravity waves� which cause the gas to mix also in the lower� convectively

stable region� This process of convective penetration plays a fundamental role for the structure

	

Figure �� Temperature �uctuations on a ���� � ��� problem

and evolution of stellar interiors�

��� Test Environment

The test program considered in our study is a Fortran code which employes the Chameleon

library �GS�
� for handling the communications among the processors� The dumping routines

and the dynamic memory allocation functions are performed by C language procedures� The

parallelism is exploited by means of a SPMD programming paradigm�

The choice of the Chameleon library is related to its portability and scalability features�

It is known that message�passing represents a common framework for programming parallel

systems� Unfortunately� even if a standard Message�Passing Interface �MPI� has been recently

proposed� a number of di�erent �and often incompatible� communication libraries are available�

each with its own strengths and weaknesses�

Chameleon implements a collection of routines aimed at providing a consistent and easy�to�

use communication paradigm and supports both native communication libraries �e�g�� Intel NX

and IBM EUI� and several highly portable packages� such as� PVM �BDGM���� PICL �Worl����

and p� �BL����

Chameleon� together with the BlockComm library �Grop���� ensures e�cient data com�

munications between processors� Various types of communications� such as� nonblocking and

ordered blocking send and receive� can be selected within the BlockComm� Rather than viewing

each communication among elements of a distributed data structure as a separate operation�

BlockComm implements aggregate operations for dynamically managing the exchange of blocks

of data between processors�

In order to aid the debugging and performance evaluation activities� Chameleon provides

the possibility of collecting detailed information on the behavior of parallel programs by means

of event monitoring� In our case� such feature has been used for tracing the program execution

and obtaining measurements on two di�erent multiprocessor architectures� namely� an IBM

�

Sp� of Argonne National Laboratory and an Intel Paragon XP S of IRISA� where our program

has been tested�

The IBM Sp� is a high�performance switch�connected cluster of RS 	��� workstations

con
gured with ��� nodes and two compiler servers� used for dispatching the programs being

executed� Each node has ��� Mbytes of main memory and � Gbyte local disk� Nodes exchange

data by means of an Omega network�

The Intel Paragon XP S is a distributed�memory� wormhole�routed� mesh�connected par�

allel system con
gured with �	 computing nodes� Each node is equipped with two Intel i�	�

processors� namely� a Message CoProcessor for communication handling and a Computing Pro�

cessor� and �	Mbytes of main memory� Access to network interfaces and disks are transparently

provided by dedicated I O nodes�

��� Experimental Results

In order to understand how our program behaves and to discover the most computation inten�

sive components of the code� a pro
ling of the program has been performed� The weight of

each component �i�e�� routine� has been obtained by executing the application on a sequential

system�

Note that the code pro
ling depends on the problem size� since the program uses an iterative

method� that is� the relaxed solver encapsulated in the multigrid code�

For the sake of simplicity� unless otherwise stated� we will present the results of our perfor�

mance debugging study for a problem of size ������	�

Figure
 shows the results of our pro
ling activity� The percentage of the time spent by

the program in each routine is plotted in Fig�
 �a�� Since performance debugging is aimed

at helping the programmer in identifying the portions of code to be modi
ed� the diagram

presents only the routines which are part of it� Hence� system library functions� such as� log�

exp� which account for about the ��! of the total time� have not been plotted� In the
gure�

the �� �heaviest� routines� which contribute for about 	���! of the total execution time� plus

the remaining routines� denoted as �others�� which accounts for about ���	!� have been shown�

Another parameter derived by the pro
ling is the number of calls to each routine �see

Fig�
�b��� Such parameter together with the percentage of time consumed gives a more pre�

cise description of the weights of the various program components� As can be seen from Fig�
�

the �heaviest� routine is the sweep� which accounts for about ��! of the time� However� such

routine has a call percentage of only ���!� Hence� the sweep routine is characterized by ����

ms call� On the other side� the interp routine� which is characterized by a large number of

calls� takes ���� ms call� In performance debugging studies� a trade�o� exists between all these

performance measures�

In parallel environments there are di�erent approaches to achieve better performance� When�

ever possible� a divide and conquer methodology is applied to the components with the largest

time per call� This is the case of our application� An alternative approach is based on the

redistribution of the routine calls according to their number and their time per call�

After the sequential pro
ling� various experiments performed on the two parallel systems

above described have been carried out� The program has been executed under di�erent condi�

�

riemann

states

exec_array

flluid_driver

interp

monot

iniect_r

u2var

intrfc

coeff

flaten

iniect

var2u

init_heat

prolong

oper

sweep

0 2 4 8 106 14 %

(a)

0 5 10 15 20 25 %

(b)

others

Figure
� Percentages of the time spent by each component �a� and of the number of calls �b�
obtained by pro
ling the program on a sequential system�

tions� namely� varying the number of allocated processors� the problem size� the communication

types and the number of dumping phases� As already pointed out� the execution and commu�

nication activities have been monitored by means of the Chameleon facilities� The overhead

due to the tracing activities accounts less than �! of the program elapsed time�

Then� the collected measurements have been analyzed by MEDEA� a software tool developed

at the University of Pavia for the analysis and visualization of the performance of parallel

programs �CMMP����

The objective of our study was to identify possible sources of poor performance within the

code itself and as a function of the underlying architecture�

The problem has been executed on the Paragon with number of processors ranging from �

to
�� Note that due to the domain decomposition technique adopted� such number has to be a

power of two� The execution time of our problem is equal to
	 minutes on one processor� The

speedup is linear up to � processors� then it goes down because the communication times become

larger� while the computation times are reduced� Hence� a loss in performance results� Figure �

shows the speedup curve for a ������	 problem� As can be seen� there is a sharp decrease when

the number of processors is increased from � to �	� Such phenomenon has less in�uence on the

execution time of larger size problems� For example� the times of a ��������� grid are � hours

and �� minutes and
 hours and �� minutes on �	 and
� processors� respectively� Indeed�

�

in such cases� the subdomains solved by each processor are equal to ��	���	 and ��	�����

respectively�

0

2

4

6

8

10

0 1 2 4 8 16 32

sp
ee

du
p

of processors

Figure �� Speedup curve for a ������	 problem executed with variable number of processors
on the Paragon�

The same problem has also been executed on the Sp�� In such a case� due to the architectural

characteristics of the system and of its interconnection network� a speedup decrease is noticed

with a larger number of processors �i�e�� 	��� This is also because of the poor communication

versus computation ratios�

Figures � and 	 represent the communication pro
les for our problem executed on four

processors of the Paragon� with blocking and non�blocking communications� respectively�

Figure �� Communication pro
le of a ������	 problem on a four processor partition of the
Paragon with blocking communications�

As can be seen� there are communication patterns between the processors� Groups of

communications repeated �� times� one for each solution time step� are identi
ed� It can also

be noticed that there are a few asymmetries in the processor timings� It is likely to
nd three

processors in a communication phase waiting for the fourth one� This phenomenon is better

��

Figure 	� Communication pro
le of a ������	 problem on a four processor partition of the
Paragon with non�blocking communications�

displayed in Fig� � where a zooming of the diagram of Fig� � is shown�

Figure �� Zooming of the communication pro
le of Fig� ��

A zoomimg over one phase of the communication pro
le obtained on the Sp� is presented

in Figure ��

Figure �� Zooming of one phase of the communication pro
le obtained on the Sp��

After the visualization of the program performance� the communications activities have

also been analyzed by means of statistical techniques in order to discover irregular patterns

and similarities� Mean values together with standard deviations and distributions of the times

spent by the various communication events have been computed� For example� the average and

��

the standard deviation are equal to ���� ms and �	�	 ms� respectively�

We then focused on on the activities performed by each processor� In particular� a com�

munication event has been described by the time spent per processor� that is� as a point in

a p�dimensional space� where p is the number of allocated processors� In Table
�
 basic

statistics obtained on a eight processor partition of the Paragon are presented� Unbalanced

conditions have been found� Even and odd numbered processors have very similar behavior

between each other� This is related to the concept of processor �leader� adopted in the code�

There are processors which are also responsible of coordinating the activities of a few other

processors�

Processor Average St� Dev� Min Max

� ��
�� ��	�� ����� �	���	�
� ����
 	����� ����� �	������

 �����

���
 ����� ��������
� ����� 	����� ����� �	�����

� ����	
����� ����� ��������
	 ��
		 	���
� ����� �	������
� ��	��

��		 ����� ��������
� ���	� 	��	�� ����	 �	������

Table �� Basic statistics of the communication times over four processors of the Paragon� The

times are expressed in ms�

The correlations among the times spent by each processor have also been derived� There

are no correlations between processor leaders� which are responsible of the coordination of a

few other processors� Indeed� such an activity leads to unbalanced timings and delays in the

program execution� High positive correlations are found between non�leader processors�

The clustering� applied to the ��	�	 communication events collected on eight processors and

represented in a eight�dimensional space� yields a subdivision into two groups characterized by

di�erent parameters� i�e�� communication times� The two groups are very unbalanced either

with respect to the number of events and to their times� The
rst cluster contains the most

part of the events which are very similar between each other� For example� the averages of the

communication times for processors � and 	 are equal to ���� ms and ���	 ms� respectively� In

order to obtain a better understanding of the composition of this big group� cluster analysis has

been applied once more on it� The new results enforce the previous ones� No better subdivisions

have been obtained�

The second group is very small and contains just the ���	! of the events whose times

are two orders of magnitude larger than the global averages� Such events refer to particular

communications where the processors have to wait for each other� The functional description

of this cluster supports these conclusions� In Figure � the distribution of communication types

belonging to this cluster is shown� As can be seen� there are only three di�erent types� namely�

Wait Receive� Global Min� Sync� Note that the Sync events are related to the dumping phase

of the code�

The dumping activities have a large in�uence on the program performance� For example�

for the ������	 problem� the global size of the dumping of the physical variables at each

��

Figure �� Functional description of the cluster analysis applied to measurements collected on
eight processors with a non�blocking communication paradigm�

program step� that is� ten times� is about �� Mbytes� The overhead due to such operations�

e�g�� I O time plus time spent for contentions on system resources� accounts for more than
�!

of the global elapsed time� that is� �� seconds on an eight processor partition of the Paragon�

Indeed� the transfer of large amounts of data is a critical factor for the interconnection network

of the parallel systems� especially in the case of message passing architectures� This heavy

data �ow consumes resources on the intermediate processors because of the routing handling�

Even in architectures with dedicated communication processors� such as the Intel Paragon� the

I O activities require the allocation and the use of communication bu�ers� which steal main

memory to the computation processors� Furthermore� a slow down of the local communications

between the processors may be introduced with consequent performance degradations due to

synchronizations�

It is important to notice that dumping phases are an integral part of the analyzed application�

They catch snapshots of each computation step and can be used as an archive as well as for

restarting the computation at intermediate steps�

Acknowledgments

The authors would like to thank IAN�CNR for the use of a SUN SC������ where all the

sequential pro
ling of the code has been performed� Special thanks go to IRISA �France� for

making possible the experimental part of the paper by providing the access to the Paragon

system� Authors gratefully acknowledge use of the Argonne High�Performance Computing

Research Facility� funded principally by the U�S� Department of Energy O�ce of Scienti
c

Computing�

�

References

�ANSI��� Fortran ��� X
j
 internal document s������ American National Standard Institute�

May �����

�BCFH�
� Z� Bozkus� Choudhary A�� G� Fox� T� Haupt� and S� Ranka� A Compilation Ap�

proach for Fortran ��D HPF Compilers� In Banerjee U�� D� Gelernter� A� Nicolau�

and D� Padua� editors� Proc� of the �th International Workshop on Languages and

Compilers for Parallel Computing� Lecture Notes in Computer Science� pages ����

���� Springer�Verlag� August ���
�

�BDGM��� A� Beguelin� J� Dongarra� G� A� Geist� R� Manchek� and V� Sunderam� A User�s

Guide to PVM� Parallel Virtual Machine� Technical Report ORNL TM�����	�

Oak Ridge National Laboratory� �����

�BL��� R� Butler and E� Lusk� User�s Guide to the p� Parallel Programming System�

Technical Report ANL��� ��� Argonne National Laboratory� �����

�CFZ�
� B�M� Chapman� T� Fahringer� and H� Zima� Automatic Support for Data Dis�

tribution on Distributed Memory Multiprocessor Systems� In Proc� Sixth Annual

Workshop on Language and Compilers for Parallel Computing� Lecture Notes on

Computer Systems� Portland� ���
� Springer Verlag�

�CMMP��� M� Calzarossa� L� Massari� A� Merlo� M� Pantano� and D� Tessera� MEDEA� A

Tool for Workload Characterization of Parallel Systems� �in preparation�� �����

�CMZ��� B� M� Chapman� P� Mehrotra� and H� P� Zima� Vienna Fortran � A Fortran Lan�

guage Extension for Distributed Memory Multiprocessors� Compilers and Runtime

Software for Scalable Multiprocessors� Elsevier� �����

�CS�
� M� Calzarossa and G� Serazzi� Workload Characterization� A Survey� Proc� of the

IEEE� ��������
	������ ���
�

�DMCL��� A� Dubey� A� Malagoli� F� Cattaneo� and Levine D� Portable and E�cient Parallel

Algorithms for Compressible Hidrodynamics� �in preparation�� �����

�EZL��� D�L� Eager� J� Zahorjan� and E�D� Lazowska� Speedup Versus E�ciency in Parallel

Systems� IEEE Trans� on Computers�
��
��������
� �����

�Grop��� W� Gropp� BlockComm� Data Exchange on Parallel Computers� Argonne National

Laboratory� June �����

�GS�
� W� Gropp and B� Smith� User�s manual for the chameleon programming tools�

Technical report� Argonne National Laboratory� ���
�

�GST��� D� Ghosal� G� Serazzi� and S�K� Tripathi� The Processor Working Set and its

Use in Scheduling Multiprocessor Systems� IEEE Trans� on Software Engineering�

��������
���
� �����

��

�HE��� M�T� Heath and J�A� Etheridge� Visualizing the Performance of Parallel Programs�

IEEE Software� �����
�� �����

�LMF��� T�J� LeBlanc� J�M� Mellor�Crummey� and R�J� Fowler� Analyzing Parallel Program

Executions Using Multiple Views� Journal of Parallel and Distributed Computing�

��	����
����� �����

�LSVC��� T� Lehr� Z� Segall� D�F� Vrsalovic� E� Caplan� A�L� Chung� and C�E� Fineman�

Visualizing Performance Debugging� IEEE Computer� pages
����� October �����

�LS��� Lenzi P� and Serazzi G� PARMON� Parallel Monitor � Release ���� Technical

Report CNR Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo n�
 ���

�����

�PV��� E� Pozzetti and V� Vetland� Parallel Programming with PARADE� In Proc� Annual

Conference AICA� �����

�SG�
� S� R� Sarukkai and D� Gannon� SIEVE� A Performance Debugging Environment

for Parallel Programs� Journal of Parallel and Distributed Computing� ��������	��

���
�

�Worl��� P� H� Worley� A New PICL Trace File Format� Technical Report ORNL TM�

������ Oak Ridge National Laboratory� �����

��

