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Abstract

Communication activities are one of the most influential
factors for the performance of parallel applications, and
usually limit the number of processors that can be profitably
allocated. Two components usually determine the commu-
nication cost of a parallel algorithm. One is the volume
and range of data transfer, which is inherent to a specific
algorithm. The other is the choice of communication strat-
egy, e.g., point-to-point versus collective exchanges, block-
ing versus non blocking protocols, which has impact on
setup costs, overheads due to buffering and/or contentions.
Knowledge of comparative performance of different strate-
gies can be very useful for a user if several choices are
available. In this article we present the results of a study
to determine the best approach to high volume, long range
communications within the frame work of multidimensional
FFT algorithm. We have investigated five widely used com-
munication strategies, available in the MPI standard, which
have identical data volumes and range of communications.
We also present a systematic analysis of the causes of per-
formance differences, with analytical models supporting the
experimental evidence.

1 Introduction

Real life applications, simulating complex chemi-
cal/physical phenomena, demand performance levels that
only parallel machines can provide. Good overall perfor-
mance is crucial for these applications. Performance opti-
mization of parallel applications is a tough job since it is
influenced by a large number of factors (e.g., parallelization
strategies, communication policies, interaction of applica-
tion code with hardware and software components of the
parallel machines). Programmers have to choose the most
appropriate parallelization and data distribution strategies
(e.g., data parallel techniques versus functional parallelism)

together with the most appropriate communication policies
to design and implement their applications. They must con-
sider the cost of communication in parallel applications, and
the ways of minimizing it [4, 5, 12]. In addition there is the
issue of portability of the code performance if it is likely to
be used on more than one platform. In depth knowledge of
a specific parallel machine allows programmers to fine tune
their applications for it, but that does not guarantee their
performance on different architectures or when allocating
different numbers of processors. Hence performance diag-
nosis and debugging is more an art than a science. A sys-
tematic approach towards the analysis of the performance
achieved by parallel applications, relating the performance
to specific code regions of the applications themselves, is
therefore very important.

In what follows we describe a performance analysis
study aimed at evaluating the performance of a widely used
computation kernel, i.e., a multidimensional Fast Fourier
Transform code. We have analyzed the FFT kernel of a
parallel three dimensional magneto hydrodynamics code [7]
written at the University of Chicago for the NASA HPCC
initiative. The FFT kernel accounted for ��� of the par-
allelism and ��� of the computation in the code, hence
its performance was critical to the overall performance of
the code. The other reason for choosing the FFT in this
study is that it can be designed with a variety of different
communication models while keeping the total volume of
data transferred and the range of transfer constant. Thus the
difference in performance comes from the inherent charac-
teristics of the communication model used. To determine
the best approach, we created five different versions of par-
allel FFT. Two of them use point-to-point blocking com-
munication, one uses point-to-point non-blocking commu-
nication, one has a set of collective communications and
the last one uses a single collective operation. MPI is used
for all the communications, and the experimentation was
done on IBM Sp2. The performances were analyzed using
Medea [6], a tool for workload characterization and perfor-



mance diagnosis of parallel applications developed at the
University of Pavia.

The outcome of this experiment has some surprising de-
viations from theoretical expectations. The non-blocking
version turns out to be the worst performing, despite the fact
the IBM-SP2 has separate communication processors. The
version with single collective operation is the fastest, where
normally one would have expected a lot of contention and
hence degradation in performance. An in-depth analysis of
the performance helps pin-point the causes for this unex-
pected behavior. We believe that the results of this work
should also be relevant for applications that have large vol-
ume of long range structured data transfer.

2 Redistribution Strategies

This section describes the five kernels used in this work.
We define a three dimensional problem�� distributed over
� processors with slabwise domain decomposition. In this
distribution, one dimension of the FFT is parallel at a time.
The local dimensions are transformed first, followed by a
distributed transpose, followed by a transform in the third
dimension. The initial data distribution, the final data dis-
tribution and the volume and range of data transfer are iden-
tical for all the five kernels. The distributed transpose is es-
sentially a complete exchange algorithm [3], where every
processor sends data to all the processors. It can be done
with a single complete exchange step, where all planes are
processed together for communication, or in steps, where
each plane initiates its own complete exchange.

The first four kernels process one plane at a time. The
first one, The Replace Kernel, uses send receive replace,
a point-to-point blocking protocol that has the same buffer
for both send and receive. The contents of the buffer are
replaced by the received data after the send is completed.
The second kernel, The Standard Kernel uses the standard
send and receive, also a point-to-point blocking protocol,
where send and receive can be scheduled separately and can
use different buffers. The number of communication calls
issued is twice that of the first kernel. The third kernel,
The Overlap Kernel, uses point-to-point non-blocking pro-
tocol. By scheduling them carefully it is possible to over-
lap communication with computation. The fourth kernel
The Oneplane Kernel uses collective operation all to all for
each plane separately. The last kernel, the Allplanes Kernel,
uses the collective communication for all the planes at once.
We have not included point-to-point communication kernels
that process all planes together, since they sometimes cause
deadlocks for large data sizes.

3 Experimental Environment

The FFT kernels, mentioned in section 2, have been in-
strumented and executed on the IBM Sp2 [2] of the Maui
High Performance Computing Center (machine details can
be browsed at http://www.mhpcc.edu). These kernels have
been instrumented by inserting statements into its source
code which when executed record some information (e.g.,
a unique id, the wallclock time, and the processor id) [11].
This information is related to specific activities performed
by some processors like communication statements, execu-
tion of either specific functions or specific portions of ap-
plication code. Hence, during the execution of the appli-
cation, measurements about its behavior are collected for
post-mortem analysis. Our FFT kernels have been instru-
mented by means of both the monitoring facilities provided
by mpich [9] and ad hoc monitoring software. Since the
monitoring code is executed concurrently with the applica-
tion code, it is important to minimize its influence on the
application performance. The influence can come in many
ways, such as use of CPU cycles and memory spaces or per-
turbing the application performance with some side effects
(e.g., cache misses). All this makes it crucial to carefully
choose the interesting behaviors/activities of the applica-
tion which have to be investigated. In our study we have
monitored the communication activities and a few routines
(i.e., the main FFT solver together with some pure compu-
tations functions from the ESSL [1] library). Special care
was taken to identify the initial costs (e.g., initialization of
trigonometric tables and working arrays, synchronizations
of the allocated processors) which have been discarded in
the performance analysis. After instrumenting the kernels
we ran a set of experiments, varying both the number of al-
located processors and the problem size. The measurements
from these experiments were then analyzed with Medea,
tool for workload characterization and performance diagno-
sis of parallel applications. We also derived the analytical
models from these performance figures, that could relate the
performance to the application parameters.

4 Performance Results

In this section we discuss the performance of the various
FFT kernels on an IBM Sp2 machine. As testbed problem
we have chosen to transform a grid of 128�128�128 points
(real values) varying the number of processors from 1 to
64. Since the FFT computing kernel resembles iterative al-
gorithms, we have collected the timing accounted for each
forward and one inverse transforms. When analyzing the
behavior of such kernels, startup and synchronization costs,
which are negligible in production runs, may become signif-
icant. For this reason we have taken special care to discard
all the startup costs due to both initialization of trigonomet-



ric tables (for computing local one-two dimensional FFT)
and synchronization delays among the allocated processors.
As an overview of the performance, figure 1 shows the time
required for performing a complete step as a function of the
number of allocated processors. All the kernels scale pretty
well up to 32 processors. To understand the relative per-
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Figure 1. Execution times, as a function of the
number of allocated processors, for each FFT
kernel.

formances and their causes, the speedup saturation region,
where there the communication starts dominating, is likely
to provide more insights. Figure 2 shows the time spent
in communication activities, as a function of the number of
allocated processors, for each of the kernels. Note that by
communication time we do not mean time to physically de-
liver the message to the destination, but the time spent by
the processors to handle the communications (that is, per-
forming MPI functions).

The figure clearly shows an anomaly between expected
behavior and exhibited behavior. The overlap kernel, which
was expected to be the fastest due to communication and
computation overlap, consistently performs the worst. This
is despite there being a separate communication processors
to minimize the communication time. The CPU is required
only to setup the communication, leaving its management
to the dedicated coprocessor. The best performing kernel
turns out to be the one with a single MPI Alltoall call.
Given the amount of flexibility available in scheduling the
data transfers of the other ones, the outcome was expected
to be different.

The message passing paradigm requires several tasks to
be performed by both the sender/receiver processors. The
sender has to copy the message from the program memory
space to system buffers. The issuing process is blocked until
the message is either buffered or sent. This can result in de-
lay if the system buffers are full. For small messages eager
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Figure 2. Communication times, as a func-
tion of the number of allocated processors,
for each FFT kernels.

protocols, which do not require special care from the sender,
are usually used. However, real applications have too large
volumes of data to allow communication policies based on
eager protocols. They typically use rendezvous protocols
which need special handling of outcoming messages. The
sender has to ensure that there is enough buffer space in
the receiver processor before sending the data. Hence it
first sends a system message (usually named ”envelope”)
to the destination for reserving the buffer. The receiver can
make the reservation or defer the sending until it has enough
space. When the sender receives the acknowledgement, it
sends the message itself (usually referred as the payload).
The receiver has to move data from system to application
buffer after the message arrives. In such a scenario, when a
lot of messages come in to a processor, it quickly consumes
all the buffering space and starts to defer communications.
It is for this reason that the cost of communication is linked
to the number of MPI calls. Even in the ideal case with no
system buffer contentions, the communication software has
to schedule few system tasks for each MPI call which man-
age the communication. These are executed concurrently
with the application and their impact on the overall perfor-
mance may not be negligible. The situation gets worse with
non blocking calls which are costlier in their setup time and
need additional buffering.

Figure 3 gives further insights into the kernel behavior
by representing the communication profiles, i.e., the num-
ber of processors performing communication activities as a
function of the execution times, of the Allplanes and Over-
lap kernels (the best and the worst performing ones). The
figure shows that processors are somewhat synchronized in
the collective communication, whereas in the Overlap ker-
nel there are a lot of fluctuations. This is because collective



(a) (b)

Figure 3. Communication profiles for Allplane (a) and Overlap (b) kernels solving a grid of
128�128�128 points with 32 processors.

calls, by their very nature cause all processors to catch up
with each other. After first collective call the processors are
likely to stay in greater sync, and therefore reduce wait for
subsequent calls. There is no such side effect in the non-
blocking calls. They actually make the situation worse be-
cause of greater overheads they carry. Even when sophisti-
cated hardware allows physical overlap of computation and
communication activities, there is very little real benefit.
For example, on the IBM Sp2 the communication proces-
sor is able to address the operating system buffers and to
move data from/to them directly by using DMA techniques.
Hence, theoretically the main processor may execute the ap-
plication code concurrently with the communication activi-
ties. In truth, memory contentions limit the real benefits in
terms of overall execution time. Up to 70% of the mem-
ory bus bandwidth may be used up by the communication
processor, leaving very limited scope for concurrent pro-
cessing by the main processor. Some curious results come
up because of this complexity. For instance, if we compare
the overall performance in Fig. 1 with the corresponding
communication times in Fig. 2, we find that the difference
in the overall performance of the Overlap and Standard ker-
nels cannot be explained by the communication time alone.
That difference is due to the hidden cost of non blocking
communication, where the control is returned to the appli-
cation before the actual physical data transfer is complete.
This data transfer steals memory bandwidth from the main
processor, thus the time of actual data transfer gets added
to the computation rather than communication. As a result
the time taken by the ESSL [1] routines to compute the local
FFT’s is increased from 1.8�� (scalar FFT) and 2.9�� (two
dimensional FFT) to 2.4�� and 4.1�� respectively. There
is also the additional cost of data packing to and from the ex-
tra buffers used to manage the communications. The impact
of the hidden cost of communication on computation time
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Figure 4. Computation times, as a function of
both communication strategy and number of
allocated processors.

is shown in Fig. 4 for all the kernels. This figure clearly
shows that there is a direct correlation between the num-
ber of MPI calls and computational performance. Allplanes
kernel, which requires only two MPI Alltoall calls for each
step (one for the forward FFT and the other for its back-
ward counterpart) shows the best computation time. More-
over transferring all the data with a single communication
call reduces the impact of setup/latency times allowing the
communication hardware to achieve a good sustained band-
width, as shown in Fig. 2.

5 Performance Modeling

To substantiate the observed behavior of different FFT
kernels, we use analytical models of their communication
and computation times. These models can help in determin-
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Figure 5. Computation model for Standard kernel (a) and communication model for Allplane kernel
(b) together with the measured times.

ing performance and scalability of different kernels. We use
the following two models:

���� � �� �
��

�
(1)

���� � �� �
��

�
� ��� (2)

where:

� represents the (communication/computation) time;

� represents the number of processors allocated;

��, ��, and �� are the parameters of the models.

Model 1 is the Amdahl model applied to computation and
communication times while model 2 is its extension which
takes into account the overheads due to the management of
the allocated processors. Note that even if the analytical
expression of model 1 is similar to the Hockney model [10],
shown in equation 3, it has a different meaning.

� � �� �
�

��
�

� �� �
�

���
� �� �

�

�
(3)

where:

��
�

� ���

� �
�

��

In the Hockeny model ��
�

is the aggregate communication
bandwidth of � processors and � is the amount of data to
be transmitted. The difference between model 1 and 3 is in
the meaning of their terms. The Hockney model expresses
the communication time as the wallclock time required to

physical deliver the message from the source to its desti-
nation processor, while in models 1 and 2 we consider the
time spent by the allocated processors to manage the com-
munication.

These models have been successfully applied to the mea-
sured times in order to describe the behavior of each data
redistribution strategy.

The physical interpretation of the parameters is:

�� represents the amount of non parallelizable work (in
computation model) or the setup time (communication
model);

�� represents the parallelizable work (computation
model) or the amount of data to be exchanged by the
� processors;

�� represents the costs required to manage the parallelism
when � processors are considered.

The values of these parameters were estimated by means
of fitting techniques available within the Medea tool, and
the resulting models were validated against the measured
data to ensure that they are accurate description of the phe-
nomena under investigation. For example, fig. 5 shows the
measured computation/communication times as well as the
modeled ones.

Note that, the sequential runs (i.e., when only one pro-
cessor is allocated) have been discarded when modeling the
communication time because it is meaningless.

Both communication (see fig. 6 ���) and computation
(see fig. 6 �	�) models have been used to compare the per-
formance of the data redistribution strategies.

Scalability can be quantitatively studied by analyzing the
models of each kernel. Speedup figures can be easily de-
rived from the models as the ratio between the performance
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Figure 6. Communication and computation models, respectively in figure (a) and (b), for all the
kernels.
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Figure 7. Communication and computation speedups, respectively in figure (a) and (b), for all the
kernels.

obtained with one processor over the performance when
� processors are considered. Figure 7 shows the speedup
curves for both communication ��� and computation �	� for
all the kernels. The communication times of the 
���
��
kernel Computation activities, whose execution times for
all the kernels are expressed by model 1, exhibit a mono-
tonic behavior and hence there is not a maximum number of
processors that can be allocated. On the other hand, com-
munication activities, which are expressed by model 2 for
all the kernels but the �

�
��� and 
���
��� ones, have

a maximum when ���� �
�

��

��

processors are allocated.

Further increase in the number of processors is likely to re-
sult in performance degradation. For examples, as shown
in fig. 7 ���, ���� � 	� for the 
���
�� communication
times. By combining the models for communication and
computation times it is possible to derive the expression for

the overall speedup. In this case, for Send-Recv, Replace,
and Overlap kernels result:

���� �

�
�� � 	�

	�

while the other two kernels do not have any constrains on
the number of processors to be allocated.
Detailed analysis of the speedup may be also focused at
evaluating the optimal number of processors which can be
profitably allocated [8].

6 Conclusions

In this paper we have looked at various different ways of
scheduling data communication between processors for the
multidimensional FFT algorithm, while keeping the overall



data volume and range of transfer the same. Some strate-
gies are clearly superior to others. Contrary to expectation,
the more sophisticated strategies (like overlapping commu-
nication and computation) do not perform as well as ex-
pected. The overheads associated with individual calls,
such as setup, buffering, lack of synchronization etc, play
a more decisive role. Hence the kernel with the fewest indi-
vidual call performs the best. Amidst the kernels with com-
parable number of calls, the setup and buffering overheads
determine the performance. The experimental results were
also substantiated by analytical models for all the kernels.
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