
Performance Issues of an HPF�like compiler �

Maria Calzarossa� Luisa Massari �� Daniele Tessera

Dipartimento di Informatica e Sistemistica� Universit�a di Pavia� via Ferrata ��

I������ Pavia 	Italy

Abstract

The performance of High Performance Fortran �HPF� applications depends on their
inherent parallelism and on the strategies adopted by compilers to distribute work
and data among the processors� The evaluation of the performance of these ap�
plications has to consider all the aspects which in di�erent ways determine such
performance� The experimental approach presented here focuses on performance
analysis of HPF kernels with the objectives of characterizing the preprocessing and
communication overheads associated with the work and data distributions and of
highlighting the bene�ts from reusing communication schedules�

Keywords� Performance evaluation� Measurements� High Performance Fortran�
Compiler�

� Introduction

The introduction of high�level data parallel languages� such as High Perfor�
mance Fortran �HPF� ���� 	
� has signi�cantly eased the programming activity
of distributed memory parallel systems� Parallel applications become easier to
implement� maintain and port to dierent architectures� Application develop�
ers do not have to bother with any explicit call to low�level message passing
primitives� They simply have to insert into their source codes HPF directives
which specify the potential parallelism of the applications� The compilers then
choose the most appropriate parallelization�optimization strategies and deter�
mine the communications required to distribute data and work among pro�
cessors� The result of the compilation process is an explicit message passing

� This work was supported in part by the European Commission under the ESPRIT
IV Long Term Research Project 	HPF
� and the Working Group 	APART�� and
by the Italian Research Council �CNR��
� Corresponding author� Email massari�mafalda�unipv�it

Preprint submitted to Elsevier Preprint �� December ����

data parallel code which contains the appropriate calls to the communication
primitives� This code is then executed on the parallel system by each of the
processors allocated to the application�

Apart from the parallel systems� the performance achieved by HPF applica�
tions strongly relies on the e�ciency of the code generated by the compilers�
Depending on the target of the evaluation process� the analysis of the perfor�
mance has to focus on dierent aspects� For example� communication patterns
and times are of little or even no interest for the developers of HPF applica�
tions� whereas compiler developers must rely on speci�c measures about the
communications for investigating the e�ciency of their design and implemen�
tation� Indeed� as already pointed out� application developers have no control
over the communications which are automatically inserted by the compilers
into the generated parallel codes�

In this framework� the evaluation of the performance of HPF applications be�
comes a multi�faced problem� In this paper� we discuss the performance issues
to be addressed in the evaluation of these applications and of the correspond�
ing compilers� Our studies focus on the HPF� language� an optimized version
of HPF for advanced industrial applications� which includes functionalities of
both HPF�� and HPF��� HPF�� Approved Extensions� and new features ��
�
The performance of a set of kernel benchmarks representative of advanced ap�
plications� is analyzed with the aim of addressing the expressiveness of HPF�
constructs and the e�ciency of the related compilation technology� Application
developers bene�t from these analyses to assess the e�ciency of their codes�
Compiler developers use these results to evaluate the strategies to distribute
work and data�

The paper is organized as follows� Section � presents the performance analysis
approach� An extensive set of experimental results� aimed at investigating
the performance of selected kernels and the bene�ts from the use of some
HPF� constructs� is presented in Section �� A brief summary of related work
is described in Section �� Finally� in Section � we draw a few conclusions�

� Performance analysis approach

The analysis of the performance achieved by parallel applications has to focus
on all the aspects which� in dierent ways� are responsible of such performance�
In the case of HPF applications� the analysis has to include the evaluation
of the various types of overhead associated with the distribution of work and
data among the allocated processors� These overheads� which refer to the code
generated for this purpose by the compilers� are �costs� which in�uence the
e�ciency and the performance of the applications� Hence� it is necessary to

�

characterize and quantify these overheads in terms of their memory� compu�
tation and communication requirements�

To address these performance issues� an experimental approach� which allows
the analysis of the performance at the level of the source�code� has to be
applied� In this framework� a tight integration of compilers and performance
analysis tools is required� Compilers identify and instrument the individual
components of the code �e�g�� loops� subroutines� and� within each of them�
the various phases associated with work and data distributions� Performance
analysis tools have to recognize� within the measurements collected at run�
time� the measures related to the various components of the code and quantify
their performance and the corresponding overheads� In order to obtain a de�
tailed evaluation of these overheads� a breakdown of the performance of each
component of the code according to the phases associated with work and data
distributions has to be derived�

The approach toward performance analysis consists of various steps dealing
with instrumentation and monitoring of the applications and analysis of the
collected measurements� In our case� this approach is based on the integrated
use of the VFC compiler ��
 and of the Medea performance tool ��
� This in�
tegrated environment ��
 allows us to derive a detailed characterization of the
behavior of HPF� applications and evaluate the preprocessing and communi�
cation overheads introduced by VFC to cope with work and data distributions�

At compile time� the instrumentation system embedded within VFC inserts
the appropriate instrumentation into the explicit message passing parallel
codes being generated� Measurements are collected during the execution of
these codes� Medea performs a postprocessing of these measurements and de�
rives performance metrics and parameters able to explain the behavior and
the performance of the applications�

From the analysis of the measurements� the overall performance together with
the overheads experienced by the applications is evaluated� The analysis is
based on pro�ling techniques which derive the performance �e�g�� execution
time� communication time� of the various components of the applications
and provide a breakdown according to the preprocessing and communication
overheads experienced within each component� These breakdowns assess the
e�cacy of the HPF� directives and clauses used to specify the parallelism
�e�g�� INDEPENDENT� ON HOME� and the distribution of the data �e�g�� BLOCK�
GEN BLOCK�� Moreover� our approach� as most experimental approaches� al�
lows us to easily address scalability issues within HPF applications� by char�
acterizing the scalability of the preprocessing and communication overheads
introduced by the compilers� Indeed� as the number of allocated processors in�
creases� the overheads might dominate the execution time of the applications�

�

� Experimental results

As already pointed out� HPF codes might experience signi�cant overheads be�
cause of work and data distribution performed by the compilers� The aim of our
performance studies is to evaluate the preprocessing and communication over�
heads introduced by compilers� and the impact of the HPF� features used to
reduce these overheads� In particular� our experiments focus on INDEPENDENT

loops� that is� loops whose iterations are independent and may be executed
in any order� The choice of these loops is two�fold� These loops represent the
core of most advanced scienti�c applications and are a valuable source of par�
allelism�
The compilers parallelize these loops by distributing work and data among
the allocated processors� Because of the irregular data accesses characterizing
most of INDEPENDENT loops� appropriate strategies have to be applied� The
VFC compiler adopts a generalization of the inspector�executor strategy ���

for the parallelization of INDEPENDENT loops� Five phases� namely work distrib�
utor� inspector� gather� executor� and scatter� can be identi�ed in the parallel
code generated by VFC� Among these �ve phases� the executor only rep�
resents the actual execution of the loop� The remaining phases represent the
preprocessing and communication overheads introduced by VFC for distribut�
ing work and data among the allocated processors� The work distributor deals
with the computation of the execution set� that is� the set of loop iterations
to be executed on each processor� The inspector performs a run�time analysis
of the loop in order to determine the access patterns of distributed data and
generate the corresponding communication schedules for non local accesses�
Then� non local data is gathered according to the computed schedules� and the
transformed loop is executed� during the executor phase� Finally� in case non
local data is updated during the execution of the loop� a scatter is performed�

Our experimental results focus on two HPF� kernels which are representative
of the main functional units of the PAM�CRASH solver ��
� These kernels are a
subset of the �nite element solver and implement the stress�strain calculations
of a typical element formulation ���
� The kernels have been parallelized by
means of VFC� Through the instrumentation system embedded within VFC�
INDEPENDENT loops have been instrumented� in order to measure the associated
overheads� The kernels have been executed on a Meiko�CS� platform� Then�
measurements collected during their execution have been analyzed by means
of the Medea tool�

�

��� Overhead characterization

The preprocessing and communication overheads introduced by VFC to dis�
tribute work and data are evaluated on two INDEPENDENT loops� These loops
are the core of an HPF� kernel benchmark which performs a shell element
calculation� and contains the stress�strain calculations over ������ elements�
driven by changing nodal points� and accumulating the resulting forces as
nodal quantities� In particular� an INDEPENDENT loop �loop�� is responsi�
ble for gathering the nodal coordinates� and computing forces� The other
INDEPENDENT loop �loop��� after gathering the coordinates� performs a sum
scatter of the computed forces� Both loops contain the NEW clause used to
de�ne variables that are private to each loop iteration� Loop� contains also a
REDUCTION clause� for performing a sum reduction across all loop iterations�
The arrays used by both loops are distributed onto a logical array of processors
according to the ���BLOCK� directive�

Figure � shows� for each of the two loops� the overall execution and commu�
nication times and the times of the phases of the inspector�executor strategy�
The times refer to runs with � and �� processors� As can be seen� the time

loop1 loop2

8 processors

loop2loop1

16 processors

Fig� �� Execution and communication times of the two loops and times of the phases
of the inspector�executor strategy in runs with � and �� processors� Times are
expressed in seconds�

�

spent in the work distributor phase is always less than ����	 seconds� whereas
the time of the inspector phase is very large and may dominate the executor
time� Loop� does not require the scatter phase since it does not update any
non local array element� Moreover� the analysis of the communication times
shows that loop� is characterized by a larger communication time� This is
due to the sum scatter operations induced by the REDUCTION clause and to
communications required to access non local array elements� In the run with �
processors� the communication times for loop� and loop�� which are equal to
����		 and ���	�� seconds� account for ��� and ��� of the execution times of
the two loops� respectively� These percentages increase up to ��� and ��� in
the run with �� processors� This is a consequence of the imbalanced conditions
that arise when a larger number of processors is involved in communication
activities�

In order to better analyze the costs due to the parallelization strategies of
VFC� we have subdivided the execution time of the two loops into the time
spent by the executor for the actual execution of the loop and into the pre�
processing and communication overheads�
Figure � presents� for loop� and loop� in a run with �� processors� the frac�
tions of the overall execution time of each loop spent for the actual execu�
tion and for the preprocessing and communication overheads� These overheads
globally account for about ��� and ��� of the overall execution times of loop�
and loop�� respectively� Indeed� as already stated� loop� is characterized by
a larger communication overhead�

loop1 loop2

100%

75%

50%

25%

0%

Executor
Preprocessing

Communication

Fig� �� Fractions of the overall execution time due to actual execution� preprocessing
and communication overheads of loop� and loop� in a run with �� processors�

The scalability of the preprocessing and communication overheads has been
analyzed by looking at their behavior as a function of the number of allocated
processors� Figure � shows the scalability of loop�� As can be seen� the execu�
tor time and the preprocessing overhead decrease as the number of processors
increases� whereas the communication time always increases� This is due to
the reduction of the execution set of each processor� When the number of
iterations to be executed by each processor becomes too small� the commu�
nication times dominate the execution times and the preprocessing overhead

�

becomes comparable to the executor time�

number of processors

Executor

Preprocessing

Communication

.

time [s]

Fig� �� Executor time and preprocessing and communication overheads for loop�
as a function of the number of allocated processors�

In order to predict� for an arbitrary number of allocated processors� the over�
heads due to work and data distributions� we have applied �tting techniques
to derive analytic models of the preprocessing and communication overheads�
Figure � shows� for both loop� and loop�� the preprocessing overheads mea�
sured for a number of processors ranging from � up to ��� The corresponding
analytic models are also shown� These models are given by ����� � �����

p
and

���	� � �����

p�����	
� where p denotes the number of allocated processors�

Fig� �� Fitting of the preprocessing overhead for loop� and loop�� as a function of
the number of allocated processors�

	

The analysis of each phase of the inspector�executor strategy from a functional
view point highlights the types of communication primitive issued within the
two loops� The work distributor does not contain any communication at all�
The inspector phase results in six types of MPI communication primitives �i�e��
Probe� Isend� Recv� Get count� Waitall� and Allreduce�� The gather and
scatter phases contain Alltoall communication primitives only� The time
spent in Alltoall and Allreduce collective communications accounts for
more than ��� of the total communication time�
Figure � shows for loop� the times spent by each of the � allocated processors
in Allreduce and Alltoall communications� As can be seen� even though all
processors exchange the same amount of data� the time spent by processor p�
in both types of communication is the smallest� This means that processor p�
is not well synchronized with the other processors� Indeed� collective commu�
nications highly stress the interconnection network of the parallel system and
may result in losses of synchronization among the processors�

Allreduce

Alltoall0.08

p0 p1 p2 p3 p4 p5 p6 p7

0.00

0.02

0.06

0.04

Fig� �� Times �expressed in seconds� spent by each of the � allocated processors for
the Allreduce and Alltoall communications of loop��

��� Schedule reuse analysis

The characterization of the overheads has shown that the inspector phase
may be particularly �expensive� and� in some cases� may dominate the actual
execution time of the loop� It is then important to amortize this cost across
subsequent executions of the loops� as in the case of loops nested into a time�
step loop� or across dierent loops with the same access patterns� The REUSE
clause works for this purpose� in that it asserts that communication sched�
ules previously computed in the inspector phase are invariant throughout the
execution of the application and can be reused�

The performance bene�ts attained from REUSE clause have been studied by
analyzing two INDEPENDENT loops� These loops are part of an HPF� ker�
nel which deals with stress�strain calculations over ������ shell elements and

�

����	� nodal points� The loops are responsible to compute the forces for each
element and to transfer these forces to the nodal points of the element itself�

One INDEPENDENT loop �loopA� is characterized by NEW and ON HOME clauses�
The ON HOME clause asserts that iterations have to be executed on the proces�
sor that owns the speci�ed array elements only� The other INDEPENDENT loop
�loopB� contains NEW� ON HOME and REDUCTION clauses and uses four arrays to
compute the internal forces� indirect addressing is used together with a scatter
operation� All the arrays used by both loops are distributed according to the
BLOCK directive�
The two loops are nested in a time marching scheme iterated ��� times� Since
communication schedules used in the loops are invariant for all the iterations
of the loops� the use of the REUSE clause should improve the performance�
The bene�t from using this clause has been investigated by running the kernel
without and with the clause itself�

Figure � shows the breakdown of the execution times of loopA� in runs with �
and �� processors� without and with the REUSE clause� The breakdown refers
to the times spent by the inspector� gather� executor� and scatter phases� Note
that the time spent by the work distributor has not been plotted because it
is always negligible� As can be seen� thanks to the REUSE clause� the execu�
tion time decreases to ��� and ��� in the runs with � and �� processors�
respectively� This is a consequence of the large decrease of the time spent
in the inspector phase� which is executed only once� that is� during the �rst
iteration�

loopA

No Reuse

Reuse

32 processors8 processors

Inspector
Gather
Executor
Scatter

Fig� �� Breakdown of the execution time of loopA without and with the REUSE clause
in runs with � and �� processors�

Figure 	 shows� as a function of the number of allocated processors� how the
overall execution times of the two loops scale in runs without and with the
REUSE clause� For loopA� the execution time decreases to ���� in a run with
� processors� and to �	�� in a run with �� processors�
The analysis of the execution times of loopB without and with the REUSE

clause shows that the bene�t from the REUSE is bigger for this loop than for
loopA� The execution times reduce to ��� and ��� in runs with �� and ��
processors� respectively�

�

Reuse

number of processors

0.00

No Reuse

3632282420161284 40 44 48 52 56 60

116.47

87.33

58.22

29.11

time [s] loopA

No Reuse

Reuse

number of processors

3632282420161284 40 44 48 52 56 60

time [s]

0.00

8.65

17.30

25.95

34.61

loopB

Fig� �� Execution times of loopA and loopB without and with the REUSE clause� as
a function of the number of allocated processors�

To gain better insights in the behavior of loopB� the breakdown of its execution
time has been analyzed� This loop does not require any gather of the data
because each processor accesses local arrays only� As can be seen from Fig� ��
the use of the REUSE clause reduces the execution time to ��� in a run with
� processors and to ��� in a run with �� processors� In particular� the times
due to the inspector phase decrease from ����� to ���� seconds and from ����
to ���� seconds� respectively� Hence� it is very pro�table to use this clause�
whenever possible�

No Reuse

Reuse

32 processors8 processors

loopB

Inspector

Executor

Scatter

Fig� �� Breakdown of the execution time of loopB without and with the REUSE clause
in runs with � and �� processors�

� Related Work

A large variety of tools for performance analysis of parallel applications ex�
ists ��� ��� ��
� Most of these tools deal with very detailed analysis of the
behavior of message passing codes�
The focus for HPF applications has to be quite dierent� Although their eval�
uation is typically carried out by looking at timestamps and speedups �see
e�g�� ���
�� such an approach fails to provide details about the behavior of the
codes� Hence� performance evaluation has to be based on a source�level anal�
ysis�

��

Few tools deal explicitly with HPF applications� In ��
� the integration of the
Pablo performance tool with a Fortran D compiler is presented� The Fortran
D compiler records information describing the relationships between perfor�
mance instrumentation and the original source code� Then� the Pablo tool
correlates the dynamic behavior of the application with the source code�
The MPP Apprentice ���
 is a tool integrated with C��� Fortran �� and HPF
compilers� It reports time statistics for the whole application� as well as for DO
loops across all the processing elements�
The approach followed in ��
 deals with the visualization of data placement
within HPF applications� Various types of view show the communication ac�
tivity in the context of the array distribution� This visualization provides
important insights to understand the behavior of the code�

� Conclusions

The important lesson we have learned from our studies is two�fold� The in�
terests and the requirements of application and compiler developers are very
dierent� Performance tools have to take into account such requirements� Pro�
�ling is a good �gure to evaluate the performance of HPF applications and to
investigate their behaviors� This pro�ling has to be strictly coupled with the
source code in order to highlight the contributions due to the actual execution
of the code and to preprocessing and communication overheads� Such an ob�
jective requires a good integration between performance tools and compilers�

There are several open issues to be addressed� one major issue deals with
supplying into the performance tools mechanisms able to provide application
developers with a better aid for tuning and optimizing their codes� These
types of approach will require an even tighter integration between compilers
and performance tools�

Acknowledgment

The authors wish to thank Viera Sipkova of the Institute for Software Tech�
nology and Parallel Systems of the University of Vienna for her invaluable
assistance in running VFC�

��

References

��
 V�S� Adve� J� Mellor�Crummey� M� Anderson� K� Kennedy� J� Wang� and
D� Reed� Integrating Compilation and Performance Analysis for Data�
Parallel Programs� In M�L� Simmons� A�H� Hayes� J�S� Brown� and D�A�
Reed� editors� Debugging and Performance Tuning for Parallel Comput�

ing Systems� pages ������ IEEE Computer Society� �����
��
 S� Benkner� HPF�� High Performance Fortran for Advanced Industrial

Applications� In P� Sloot� M� Bubak� and B� Hertzberger� editors� High�
Performance Computing and Networking� volume ���� of Lecture Notes

in Computer Science� pages 	�	����� Springer� �����
��
 S� Benkner� K� Sanjari� V� Sipkova� and B� Velkov� Parallelizing Irregular

Applications with the Vienna HPF� Compiler VFC� In P� Sloot� M�
Bubak� and B� Hertzberger� editors� High�Performance Computing and

Networking� volume ���� of Lecture Notes in Computer Science� pages
������	� Springer� �����

��
 M� Calzarossa� L� Massari� A� Merlo� M� Pantano� and D� Tessera� Medea�
A Tool for Workload Characterization of Parallel Systems� IEEE Parallel

and Distributed Technology� �����	����� �����
��
 M� Calzarossa� L� Massari� A� Merlo� M� Pantano� and D� Tessera� In�

tegration of a Compilation System and a Performance Tool� The HPF�
Approach� In P� Sloot� M� Bubak� and B� Hertzberger� editors� High�
Performance Computing and Networking� volume ���� of Lecture Notes

in Computer Science� pages �������� Springer� �����
��
 J� Clinckemaillie� B� Elsner� G� Lonsdale� S� Meliciani� S� Vlachoutsis� F�

de Bruyne� and M� Holzner� Performance Issues of the Parallel PAM�
CRASH Code� The International Journal of Supercomputer Applications

and High Performance Computing� ����������� ���	�
�	
 High Performance Fortran Forum� High Performance Fortran Language

Speci�cation � Version ���� Technical Report� Rice University� January
���	� Available at� http���www�crpc�rice�edu�HPFF��

��
 A� Hondroudakis� Performance Analysis Tools for Parallel Programs�
Technical Report� Edinburgh Parallel Computing Center � University
of Edinburgh� July ����� Available at� http���www�epcc�ed�ac�uk�epcc�
tec�documents�html�

��
 D� Kimelman� P� Mittal� E� Schonberg� P�F� Sweeney� K� Wang� and
D� Zernik� Visualizing the Execution of High Performance Fortran �HPF�
Programs� In IPPS���	 �th International Parallel Processing Symposium�
pages 	���	��� IEEE Computer Society Press� April �����

���
 C� Koelbel� D� Loveman� R� Schreiber� G� Steele� and M� Zosel� The High
Performance Fortran Handbook� The MIT Press� Cambridge� �����

���
 G� Lonsdale� S� Meliciani� G� Mozdzynski� and H� Schiermueller� Report
on Project Benchmarks Rel� �� Document HPF� D���a� April ���	�
Available at� http���www�par�univie�ac�at�hpf��unsecure�d��a�ps�gz�

���
 C�M� Pancake� M�L� Simmons� and J�C� Yan� editors� Computer� Special

��

Issue on Parallel and Distributed Processing Tools� ������� �����
���
 C�M� Pancake� M�L� Simmons� and J�C� Yan� editors� IEEE Parallel and

Distributed Technology� Special Issue on Performance Evaluation Tools�
����� �����

���
 J� Saltz� K� Crowley� R� Mirchandaney� and H� Berryman� Run�Time
Scheduling and Execution of Loops on Message Passing Machines� Jour�
nal of Parallel and Distributed Computing� ������������� �����

���
 W� Williams� T� Hoel� and D� Pase� The MPP Apprentice Performance
Tool� Delivering the Performance of the Cray T�D� In K�M� Decker� ed�
itor� Programming Environments for Massively Parallel Distributed Sys�

tems� pages �������� Birkhauser Verlag� �����
���
 H�W� Yau� G�C� Fox� and K�A� Hawick� Evaluation of High Performance

Fortran Through Application Kernels� In B� Hertzberger and P� Sloot�
editors� High�Performance Computing and Networking� volume ���� of
Lecture Notes in Computer Science� pages 		��	��� Springer� ���	�

��

