
�

PERFORMANCE ANALYSIS OF A PARALLEL HYDRODYNAMIC APPLICATION�

Daniele Tessera� Maria Calzarossa Andrea Malagoli
Dipartimento di Informatica e Sistemistica Department of Astronomy

Universit�a di Pavia University of Chicago
I������ Pavia� Italy Chicago� IL 	�	
�

E�mail� ftessera� mccg�gilda
unipv
it E�mail� malagoli�liturchi
uchicago
edu

Keywords� performance evaluation� monitoring� commu�
nication analysis

ABSTRACT

It is common experience that high performance comput�
ing applications do not fully exploit the potential paral�
lelism of a given architecture
 The reasons for such perfor�
mance degradation are related to the various interactions
between the design and the implementation of the applica�
tion and the underlying hardware
 While simple theoretical
models provide useful initial estimates� they are often too
general to explain the detailed behavior of a speci�c hard�
ware�software con�guration
 In this paper we present� by
means of a case study� a model for analyzing performance
of parallel applications and for diagnosing sources of perfor�
mance degradation
 Such an approach is based on experi�
mental measures collected at run�time
 In the case study�
we focus on the performance analysis of a Grand Challenge
hydrodynamics application executed on an IBM SP� sys�
tem

� INTRODUCTION

There are many factors which characterize and limit the
performance of an application code executed on massively
parallel systems
 Typically� it is not very easy for high per�
formance computing applications� which do not consist of
simple benchmark kernels� to fully exploit the potential par�
allelism of multi�processor systems� due to both the intrin�
sic applications structure and to the system architecture

For example� unbalanced data exchange between proces�
sors can give rise to chaotic and con�icting communication

�The research was supported in part by the European Com�
mission under the ESPRIT IV Project LTR n� ����� and by the
Italian C�N�R�� Malagoli was supported by the NASA HPCC
Grand Challenge grant NAG�	���
 �	�
���� The research was
also sponsored by the Phillips Laboratory� Air Force Materiel
Command� USAF� under cooperative agreement number F�
����

��������� The views and conclusions contained in this docu�
ment are those of the authors and should not be interpreted
as necessarily representing the o�cial policies or endorsements�
either expressed or implied� of Phillips Laboratory or the U�S�
Government�

patterns in distributed memory systems
 Hence� commu�
nications between physically remote processors can experi�
ence long delays
 Con�icts on memory accesses might arise
in shared memory systems
 Moreover� certain parts of the
application may be intrinsically sequential
 All these and
other situations are sources of penalties for the overall appli�
cation�s performance
 Therefore� the intuitive idea that the
performance should be roughly proportional to the num�
ber of processors allocated to an application gives a rather
inaccurate estimate of what is actually achieved
 Also� per�
formance of massively parallel systems cannot be charac�
terized by simple parameters� like MFLOPS� SPEC marks�
which vendors often like to use to advertise their machines

Rather� more detailed analyses are required� di�erent mea�
sures provide di�erent and complementary performance es�
timates �see e
g
� �CS�
�� �CMM���� �Fos����

Performance analysis and diagnosis are fundamental
to identify those critical components within an application
where tuning actions can substantially improve its overall
performance
 Experimental approaches� where measure�
ments collected during the execution of the application are
considered� represent the basis for such studies
 Monitoring
and pro�ling tools �see e
g
� �Wor���� �RAA��
�� �Yan����
are to be used for gathering at run�time the data re�
lated to the behavior of the application
 A post�mortem
analysis of the large amount of raw data collected is re�
quired to determine a quantitative as well as a quali�
tative characterization of the performance
 Many tools�
�e
g
 �HE���� �HL���� �RAN��
�� �Mea���� work for the pur�
pose
 Systematic approaches for the interpretation of the
achieved performance� which is not always trivial and easy
to understand and to explain� are required
 These ap�
proaches have to provide compact and synthetic representa�
tions of the behavior of the application able to identify and
to highlight its most relevant performance characteristics

This paper presents on a case study a set of guidelines
to be followed for performance analysis and diagnosis of
parallel applications
 We have chosen� as a running exam�
ple� a Grand Challenge hydrodynamics code for the study
of turbulent convection in stars
 This code has reasonably
simple structure� which makes it well suited to be used as
an illustrative example
 Furthermore� the numerical algo�
rithms employed within the code are the basis for a wide
range of computational �uid dynamics applications

An extensive set of detailed performance experiments
has been executed on the IBM SP� system at Maui High
Performance Computing Center
 Unbalanced communica�
tion and computation activities and loss of synchronization

among the processors are the main sources of ine�ciencies
identi�ed in our case study

The paper is organized as follows
 Brief descriptions
of the main characteristics of the application considered in
our case study� of the support environment and the tools
used for performance analysis are given in Section �
 The
various types of analyses are presented and discussed in
Section

 Future directions in the �eld of performance
analysis of parallel applications are outlined in Section �

� CODE AND SUPPORT ENVIRONMENT

This section attempts to summarize the main characteris�
tics of the application code considered in our case study with
the aim of pointing out the numerical algorithms adopted
together with their interactions and their parallel character�
istics
 The architectural features of the system where our
application executed and the support environment of our
experiments are also brie�y described

The code considered in our case study� developed as
part of a NASA Grand Challenge project at the University
of Chicago �see �MDC������ numerically solves the equa�
tions of compressible hydrodynamics for a gas in which
the thermal conductivity changes as a function of temper�
ature
 The core of the computational algorithm consists
of two independent components� a �nite di�erence higher�
order Godunov method for compressible hydrodynamics�
and a Crank�Nicholson method based on nonlinear multi�
grid method to treat the nonlinear thermal di�usion oper�
ator
 The two algorithms are combined together using a
time�splitting technique

The code� designed using an SPMD programming
paradigm implemented on a message passing model� focuses
on �ow geometries which can be mapped on a regular rect�
angular grid
 Therefore� we can apply standard domain
decomposition techniques to distribute the data uniformly
among processors
 Moreover� because the �nite di�erence
operators in our scheme use only nearest neighboring points
to update a grid zone� the communications tend to be quasi�
local� with very few truly global communication operations
being necessary

The Godunov method used for the equations of com�
pressible hydrodynamics is an explicit method which re�
quires only one nearest neighboring data exchange per time
step
 The basic idea of the multigrid method is to increase
the convergence speed of the basic relaxation iteration �e
g
�
a Jacobi or Gauss�Seidel iteration� by combining solutions
of appropriately de�ned relaxation problems on several lev�
els of coarse grids� each grid of a lower level having half the
size of a grid at the upper level

The multigrid algorithm has two di�erent sections

The �rst section is similar to the Godunov scheme
 The
physical grid is decomposed into sub�domains� which are
then mapped onto di�erent processors
 Each local domain
has its own injection into the coarse grid
 When the grid
size per processor becomes too small� the second section
begins

Each relaxation step requires nearest neighbors data

exchange� at all levels of the grid
 In the second section� the
nearest neighbors data exchange becomes very expensive
relative to the computation at each processor
 Hence� we
do a global collection of all the local domains� to provide a
copy of the complete grid to all the processors
 We continue
with the process of injecting into coarse grids until we have
a small enough grid to be solved exactly
 The entire pro�
cess of injecting� relaxing and prolonging back is completely
local to the processors� and is performed redundantly� but
concurrently� on each processor
 This redundancy elimi�
nates the need for further global communications during
the prolongation phase to the non local meshes

The code has been implemented using Fortran ��
and C languages
 Functions from the Chameleon library
�see �GS�
��� which provides a uniform interface to the com�
munication systems available on various parallel systems�
are used
 This approach is the key to insure portability
of the code across parallel architectures and performance
improvements by tuning communication protocols

As part of the support environment for our study� the
monitoring facilities of the Chameleon library have been
used to collect at run�time information related to each com�
munication event �i
e
� beginning� end� type�
 This informa�
tion� stored into trace�les according to the ALOG format
�see �BL����� has then been processed by means of Medea
�see �CMM����� �CMM��	��� the tool used for the evalu�
ation and the visualization of the performance achieved by
our application

The performance of our hydrodynamics code has been
tested on the IBM SP� at Maui High Performance Comput�
ing Center
 The system consists of ��� processors �nodes��
grouped together into frames containing � or �	 proces�
sors directly linked to a switch board� which provides a
fully connected topology �see �SSA�����
 Additional switch
boards are used to provide interconnections between frames
through a multistage network

� PERFORMANCE ANALYSIS

As already discussed� it is quite di�cult to extract and to
select among the large amount of information collected by
monitoring tools the most relevant information able to ex�
plain the behavior and the performance of a parallel appli�
cation
 Various types of statistical and numerical analysis
techniques need to be applied for performance evaluation
and diagnosis
 These analyses have to identify the ine��
ciencies within the code by pointing out the achieved and
the achievable performance and the portions of code which
in�uence and determine such performance

In what follows� we apply a hierarchical approach
which starts from high level information �i
e
� static ap�
proach� and then goes deeper and deeper into the analy�
sis �i
e
� dynamic approach and SPMD analysis� to capture
more and more detailed performance information

This case study should provide a sort of guidelines
since� as we will see� the obtained results are general enough
that can be used for a large variety of application domains

In order to keep our experiments uniform� we have

used a dedicated partition of the IBM SP� with 	� pro�
cessors only
 Note that� although production runs of ap�
plications dealing with interactive solvers typically require
thousands of iterations� a small number of iterations �i
e
�
ten� is enough to analyze the behavior of the embedded
solver and to predict its performance
 Moreover� in order
not to perturb our analyses and our predictions� we have
decided to discard the �rst iteration since it experiences
all the delays related to the initial synchronization of the
allocated processors

��� Static Approach

As a �rst high level description� our application has been
characterized by a few static parameters� e
g
� execution�
communication and computation times� which give prelim�
inary insights into its performance
 In particular� the ex�
ploitation of the potential parallelism available with a given
number of processors is shown
 The execution time for a
problem of ������� points distributed among
� dedicated
processors of the IBM SP� is equal to ��
�
s� the com�
putation and communication times are ��

�s and

��s�
respectively
 The communication time accounts for about
��
��� of the overall execution time
 When the percent�
age of communication time is small� each processor spends
most of its time in computation activities
 Hence� as a rule
of thumb� we can say that the performance can be improved
by allocating a larger number of processors
 For example�
by allocating 	� processors to the same problem� we expe�
rience a
�
��� decrease of the execution time� which is
equal to ��
��s
 On the other hand� when the percentage
of communication time is dominant� each processor spends
a considerable amount of time in communication activities

In this case� an increase of the number of allocated proces�
sors may even result in an increase of the overall execution
time
 Then� it might be worth to focus the analysis on
the communication policies adopted by either the library
and the system� or on the communication patterns of the
application

As part of the static approach� we have considered a set
of runs of our application with varying the number of pro�
cessors and the problem size
 The objective of these analy�
ses is to study the scalability of the application� that is� to
show how it is able to exploit the available parallelism
 Fig�
ure � presents the execution times for problem sizes ranging
from ������� up to ��������� when the number of allo�
cated processors varies from � to 	�
 As can be seen� the
application scales fairly well according to the number of al�
located processors
 However� there are a few ine�ciencies
which degrade the achieved performance
 For example� on
a problem size of ������� going from
� to 	� allocated
processors� we have an increase of about �� of the time
spent by each processor in communication activities even
though the amount of exchanged data �i
e
� �
�Mbyte� de�
creases by
�� due to smaller local domains
 This is due to
an increase of contentions on the interconnection network

Another source of performance degradation is the compu�
tation related to the extra points required by the �nite dif�
ference operators� i
e
� their stencil
 When the number of
allocated processors is doubled� since the size of the local
domains is halved� the computation time for each processor

1 2 4 8 16 32 64

10

100

1000

2388

512x512

1024x1024

2048x2048

4096x4096

8192x8192

execution time [s]

of processors

Figure �� Execution times for problem sizes ranging from
������� up to ��������� as a function of the number of
allocated processors

should be halved
 In our case� this reduction is equal to
��� only� due to stencil computation
 Hence� these extra
computations may be not negligible and have to be taken
into account when dealing with scalability analysis

As a part of the static approach and as a preliminary
study towards the dynamic analysis� the communication ac�
tivities have been characterized by their type and by the
amount of exchanged data
 In what follows� we focus our
analyses on a run of a problem size of ������� points on
	� processors

Most of the communications ���
���� are point�to�
point send�receive operations due to the exchange of
boundaries of local domains
 There are very few global
operations involving all the allocated processors
 The com�
munications are also characterized by an exchange of small
messages whose average length is equal to ���� bytes
 Fig�
ure � presents the distribution of the length of the ��	�

	
point�to�point messages exchanged by the 	� allocated pro�
cessors
 The ���th percentile of the distribution �equal to
��	 bytes� is also shown
 Such a distribution provides use�
ful information on the communication requirements of the
application and drives the dynamic analysis

Figure �� Distribution of the length of the point�to�point
messages exchanged by the 	� allocated processors

�a� �b�

Figure
� Communication pro�le �a� and a zoom over one phase �b� for a run with 	� processors

��� Dynamic Approach

The dynamic behavior of the communication activities
has been studied by analyzing the pro�le curves which rep�
resent� as a function of the execution time� the number of
processors involved in simultaneous communication activi�
ties
 The area below the curve represents the time spent by
all the processors in communication activities

Figure
�a� shows the communication pro�le for our
application� where the ������� grid has been equally dis�
tributed among the 	� allocated processors
 In the case of
perfectly balanced work and data distributions� data par�
allel applications should exhibit very sharp pro�le curves�
i
e
� all the processors should start and complete the same
activity at the same instant of time
 However� this does
not occur in general and neither in our case� as can be
seen from Fig

�b�� which is a zoom over one of the nine
iteration steps shown in Fig

�a�
 The processors are not
exactly synchronized as expected
 Indeed� by looking at the
�rst communication phase� i
e
� the �rst peak of Fig

�b��
we notice that although almost all the processors �about
	�� start simultaneously their communications� they have
to wait for the very few remaining �just
 or �� in order to
complete the communication
 As a consequence� the delays
of few processors are experienced by all the others with a
consequent degradation of the performance due to an in�
crease in the overall communication time

The situation of processors waiting for few others� as shown
by communication pro�les� may denote the presence either
of unbalanced data or work distributions within the appli�
cation and of ine�ciencies in the exploitation of the avail�
able parallelism
 Hence� the analyses have to be focused
on more speci�c activities� i
e
� send� receive
 The trans�
mitting and receiving pro�les are shown in Fig
 ��a� and
Fig
 ��b�� respectively
 The two pro�les represent the num�
ber of processors simultaneously sending or receiving mes�
sages as a function of the execution time
 Although the
same blocking communication protocol is adopted for both
send and receive activities� the shapes of the two pro�les
are very di�erent
 A send is completed when a message
reaches the system bu�er of the source processor� without
implying that the message itself has been received by the
destination processor
 Hence� transmissions are much faster
than receive activities because they only require the avail�
ability of free bu�ers
 Indeed� the IBM SP� implementation

of this protocol forces the completion of the data transfer
to�from the application and system bu�ers before returning
the execution to the application itself

The transmitting pro�le of Fig
 ��a� is characterized
by sharp changes in the number of processors simultane�
ously performing a send operation
 The �gure also shows
that the number of processors whose activities are well syn�
chronized ranges from �� up to ��
 This means that there
are �uctuations in the synchronization among the allocated
processors
 Furthermore� because each operation requires�
on the average� only �	�s �with a standard deviation equal
to ���s�� we never �nd more than �� processors �out of the
	� allocated� simultaneously sending messages

The receiving pro�le �see Fig
 ��b�� is smoother than its
transmitting counterpart� it presents larger peaks involving
from �� up to 	� processors� waiting for the completion of
receive operations
 This behavior is mainly due to trans�
mission delays� since the time spent to transfer data from
the communication to the application bu�ers is equal to the
time to transfer data from the application to the commu�
nication bu�ers
 The contentions among the processors to
obtain free communication links on the interconnection net�
work are responsible for such delays
 As we will explain in
more details later on� this is due to the contentions on the
interconnection network of the IBM SP�

��� SPMD Analysis

As part of our hierarchical approach towards performance
analysis� we have applied the SPMD analysis which focuses
on the individual communication activities issued by each
allocated processor
 This approach has been named after
the SPMD �or data parallel� programming paradigm
 As
already pointed out� because of this paradigm� all the pro�
cessors issue the same operations
 After the computations
on its local domain� every processor has to exchange the
boundaries with its neighbors
 This implies that all proces�
sors start a send operation followed by a receive

The goal of the SPMD analysis is to investigate the
similarities of the behavior of the processors
 Clustering
techniques� implemented within Medea� have been used for
the purpose� the behavior of each processor has been de�

�a� �b�

Figure �� Number of processors� as a function of execution time� sending �a� and receiving �b� messages during one iteration
step

scribed by �ve parameters corresponding to the times spent
for communication� transmission� receiving� for performing
global operations� that is� for extrema �ndings and for col�
lecting data
 Clustering techniques� applied to these 	� tu�
ples� yield a subdivision of the processors in two groups

The �rst group contains
� of the 	� allocated processors
which are characterized by smaller times� in particular�
these processors are ��� faster in collecting data than the
remaining
� belonging to the second group
 The mean
times spent in these operations are equal to �
���s and
�
���s� respectively
 Let us recall that the 	� processors
allocated to our application are hardwired eight by eight to
eight di�erent frames
 The cluster subdivision outlined that
all the processors but two� belonging to the same frame ex�
hibit a similar behavior
 This result con�rms the idea that
processors within the same frame reach a better synchro�
nization
 Contentions arising when accessing shared links
in the multistage network are responsible of losses of syn�
chronization

As a further re�nement� the behavior of the individual
processors has been analyzed by applying clustering to the
���� communications required by the application on each
processor
 Two groups of communication activities have
been identi�ed
 The �rst group which accounts for ��
��
of the communications� consists only of send ��	
��� and
of receive ��

�� operations
 The second group� in turn�
is composed by the remaining ��� communications subdi�
vided in receive ������ global collection ��
��� and global
minimum ��
���
 A synthetic description of these groups is
given by their centroids� i
e
� their geometric centers� shown
in Fig
 �
 The centroids represent the mean times spent to
perform a communication activity on a speci�c processor

The gray and the black bars refer to the �rst and the sec�
ond group� respectively
 As can be seen� communications
belonging to the �rst group require� on the average� times
ranging from �
���ms �processor
	� up to �
���ms �proces�
sor �
�� while the mean times of communication activities
belonging to the second group vary from �
	��ms �processor
�
� up to

���ms �processor ���
 Moreover� note that the
communication library rearranges the boundary exchanges
of local domains in order to minimize the contentions on the
communication network and hence� due to both these con�
tentions and the communication policies� individual proces�
sors exhibit di�erent behavior
 For example� processor
	

is very fast in performing a few communication activities
�which belong to the �rst group� and it is very slow for few
others �which belong to the second group�

The information obtained by this approach� i
e
� by fo�
cusing on the communication activities issued by each pro�
cessor� can be very useful for evaluating the e�ectiveness of
tuning actions on the communication policies
 Per proto�
col analyses provide good evaluations on the performance
improvements achievable by overlapping� for example� send
and receive activities at the expenses of extra bu�ers
 As
a result of this study� we have obtained useful information
which are the basis for tuning and optimizing the perfor�
mance of our code

� CONCLUSIONS

We have explored a detailed evaluation of the achieved �or
achievable� parallel performance of a real�life high perfor�
mance computing application code
 In order to present a
working example� we have focused on the case study of a
speci�c application code which is part of the NASA HPCC
Grand Challenge program
 The objective of our analyses
is the identi�cation of the portions of the code sources of
ine�ciencies which are responsible of performance degrada�
tion
 Clearly� the combined roles of the parallel architec�
ture� its operating system and the application software are
to be considered together and cannot be evaluated sepa�
rately
 For this reason� an experimental approach� whereby
performance is measured� is likely to provide useful infor�
mation that can lead to performance improvements� while
providing data useful to the construction of more sophisti�
cated theoretical performance models

We have presented and discussed a number of perfor�
mance indicators that can be derived from the measure�
ments collected by monitoring tools
 We have also discussed
how to use and to interpret the information provided by
these indicators and how to relate the observed performance
�or lack of thereof� to the characteristics of the application
code and of the architecture

Future work will be dedicated to test this methodol�
ogy on di�erent applications �e
g
� distributed Fast Fourier

3.182

2.677

0.218

0.158

time [ms]

 0 1 2 3 4 6 7 9 10 13 15 165 8 1211 14 17 18 19 20 21 22 28 30 3123 24 25 26 27 29 32 34 35 38 39 40 41 42 43 44 46 4833 36 37 45 47 49 50 52 53 54 55 56 57 58 59 6051 61 62 63

processor identifier

Group 1 Group 2

Figure �� Mean time� for each of the two groups� spent to perform communication activities on each processor

Transforms and adaptive mesh re�nement� and to derive
theoretical models of the performance based on experimen�
tal approaches

References

�BL��� R
 Butler and W
 Lusk
 Monitors� Mes�
sages� and Clusters� The p� Parallel Program�
ming System
 Parallel Computing� �������
�	�� ����

�CMM��� M
 Calzarossa� L
 Massari� and A
 Merlo
 Per�
formance Analysis of Concurrent Software� is�
sues� methodologies and tools
 In G
 Balbo
and M
 Vanneschi� editors� General Purpose
Parallel Computers� Architectures� Program�
ming Environments� and Tools� pages ����
���
 ETS� ����

�CMM���� M
 Calzarossa� L
 Massari� A
 Merlo� M
 Pan�
tano� and D
 Tessera
 MEDEA � A Tool
for Workload Characterization of Parallel Sys�
tems
 IEEE Parallel and Distributed Technol�
ogy� ����������� ����

�CMM��	� M
 Calzarossa� L
 Massari� A
 Merlo� and
D
 Tessera
 Parallel Performance Evaluation�
the MEDEA Tool
 In H
 Lidell� A
 Colbrook�
B
 Hertzberger� and P
 Sloot� editors� High�
Performance Computing and Networking� vol�
ume ��	� of Lecture Notes in Computer Sci�
ence� pages �������
 Springer�Verlag� ���	

�CS�
� M
 Calzarossa and G
 Serazzi
 Workload Char�
acterization� a Survey
 Proc� of the IEEE�
��������
	������ ���

�Fos��� I
T
 Foster
 Designing and Building Parallel
Programs
 Addison�Wesley� ����

�GS�
� W
 Gropp and B
 Smith
 Users Manual for
the Chameleon Parallel Programming Tools

Technical Report ANL��
��
� Argonne Na�
tional Laboratory� ���

�HE��� M
T
 Heath and J
A
 Etheridge
 Visualizing
the Performance of Parallel Programs
 IEEE
Software� �����
�� ����

�HL��� V
 Herrarte and E
 Lusk
 Studying Parallel
Program Behavior with upshot
 Technical Re�
port ANL������� Argonne National Labora�
tory� ����

�MDC���� A
 Malagoli� A
 Dubey� F
 Cattaneo� and
D
 Levine
 A Portable and E�cient Paral�
lel Algorithm for Astrophysical Fluid Dynam�

ics
 In Parallel Computational Fluid Dynam�
ics� pages ��
��	�
 North�Holland� ����

�Mea��� A
D
 Malony et al
 Performance Analysis of
pC��� A Portable Data�Parallel Program�
ming System for Scalable Parallel Comput�
ers
 In Proc� Eighth Int�l Parallel Processing
Symp�� pages �����
 IEEE Computer Society�
����

�RAA��
� B
 Ries� R
 Anderson� W
 Auld� D
 Breazeal�
K
 Callaghan� E
 Richards� and Smith W

The Paragon performance monitor environ�
ment
 In Proceedings Supercomputing ����
pages �������
 IEEE Computer Society� ���

�RAN��
� D
A
 Reed� R
J
 Aydt� R
J
 Noe� K
A
 Shields�
B
W
 Schwartz� and L
F
 Tavera
 Scalable
Performance Analysis� The Pablo Perfor�
mance Analysis Environment
 In Proceedings
Scalable Parallel Libraries Conference� pages
������

 IEEE Computer Society� ���

�SSA���� C
B
 Stunkel� D
G
 Shea� B
 Abali� M
G

Atkins et al
 The SP� High�Performance
Switch
 IBM Systems Journal�
�������������
����

�Wor��� P
H
 Worley
 A New PICL Trace File For�
mat
 Technical Report ORNL�TM�������
Oak Ridge National Laboratory� ����

�Yan��� J
C
 Yan
 Performance Tuning with AIMS
� An Automated Instrumentation and Mon�
itoring System for Multicomputers
 In Pro�
ceedings of the 	
th Hawaii International Con�
ference on System Sciences� volume II� pages
	���	

� ����

