
Benchmarking of a commercial
Linux cluster
Daniele Tessera
Dipartimento di Informatica e Sistemistica,
Università degli Studi di Pavia, Italy.

Abstract

Cluster computing has emerged as a viable alternative to massively parallel super-
computers to cope with the computing demands of scientists and HPC application
developers. Cluster machines, built on top of Commodity Off The Shelf compo-
nents and based on open source software are becoming very popular. It is thus
important to characterize the performance of these machines and to investigate
the scalability of numerical algorithms when large numbers of processors are allo-
cated.

In this paper, we present a performance characterization of a large Linux clus-
ter, that is, the IBM NetFinity located at the Maui High Performance Computing
Center. The aim of this study is to evaluate the performance benefits to a few
numerical applications resulting from specialized high bandwidth communication
components, i.e., Myrinet switches, over a typical Beowulf cluster based on Ether-
net networking. Our performance characterization study focused on the behavior
of a few numerical kernels and of a climate model benchmark whose performance
relies on complex iterations among various parallel algorithms. We investigated
the scalability of the benchmarks under various hardware and software configura-
tions.

The study of overheads on the overall performance of a few numerical kernels
deriving from different processor allocation policies concludes this paper.

1 Introduction

Exploiting the cumulative computing capability of workstations and PCs has been
pursued for a long time, as an inexpensive solution for delivering high performance
to many scientific and industrial applications. The underlying idea is to allow
parallel applications to be executed over a set of independent systems connected
via local area networks [20]. Various approaches such as distributed concurrent
computing [27], network of workstations [2, 7], Beowulf architectures [6, 26],
and the multicomputer operating system [5, 16] have been proposed to design
machines with better performance and flexibility.

Cluster machines, built on top of commodity off the shelf components and
initially developed by research centers as prototype machines are nowadays be-
coming very popular. The increasing performance of commodity components and
the availability of interconnection networks able to link a large number of such
components have fueled the development of cluster machines. The development
of specialized hardware and software components tuned for matching the demands
of HPC applications have resulted in cluster machines approaching the supercom-
puters’ performance and ranked among the top 500 most powerful supercomput-
ers. Many studies [1, 3, 4, 9, 12, 14, 19, 21, 28, 29] present the characteristics of
different cluster machines.

The fact that hardware vendors now offer scalable cluster machines also testi-
fies to the maturity of cluster computing as a cost effective solution for the high
performance needs of scientists and numerical engineers.

The success [15] of cluster architectures is also related to the large availability
of their building components, as well as their community support. The maturity of
open source software which addresses the operating system, commodity libraries,
and development tools, has significantly contributed to that popularity. Indeed,
open source software eases the portability of application code between different
cluster architectures by providing a flexible common environment for application
development. Moreover, parallel applications developed for traditional massively
parallel supercomputers can be easily adapted to run on cluster machines.

It is thus important to evaluate the performance offered by these machines.
This paper presents a detailed study of the performance achieved by the large IBM
NetFinity cluster at the Maui High Performance Computing Center [23] on vari-
ous scientific benchmarks. Although we have analyzed the performance of a spe-
cific machine, our results have a broader applicability. Indeed, the IBM NetFinity
adopts a typical cluster architecture based on Intel Pentium processors intercon-
nected via both Myrinet and Ethernet networks, and the Linux operating system.

The aim of our study is to characterize cluster performance under various sci-
entific workload and system configurations. For such a purpose, we have analyzed
the times spent in communication, computation, and resource contentions activi-
ties when a large number of processors has been allocated to different numerical
kernels.

The paper is organized as follows. Section 2 provides an overview of the
hardware and software testbed environments and describes our methodological ap-

proach to the performance characterization. Section 3 describes the performance
achieved by the analyzed benchmarks. The impact of different processor alloca-
tion policies on the benchmark performance is presented in Section 4. Finally,
Section 5 summarizes the performance behavior of the Linux cluster and outline
future works.

2 Experimental Environment and Methodology

A large number of cluster machines are nowadays proposed as a viable alternative
to traditional parallel supercomputers for scientific and industrial computing. It is
thus important to evaluate the performance that cluster machines actually deliver
to number intensive applications.

The objective of this study is to benchmark a Linux cluster with large numbers
of processors allocated to very popular scientific and numerical testbed kernels.
For such a purpose, we have investigated the performance of a state of the art
Linux supercluster, that is the IBM NetFinity [25] at the Maui High Performance
Computing Center. This machine is a cluster composed of 260 nodes running
Linux as operating system. Each node houses 1Gbyte of memory and two Intel
Pentium III processors clocked at 933Mhz. Nodes are connected via both a high
performance Myrinet switch [24] and a Fast 100Mbps Ethernet network. The clus-
ter ranks among the largest and most powerful Linux clusters. The HPC cluster
environment includes the Maui Scheduler Open Cluster Software [22], for exe-
cuting applications on dedicated nodes, and optimized middleware drivers for the
Myrinet interconnection network. Communications over Ethernet are managed by
the p4 [10] facility embedded in the MPI communication library.

As testbed kernels we have considered a few kernels from the well known Park-
Bench [18] and NAS Parallel Benchmarks [30] suites, as well as a more complex
climate model benchmark, that is the PSTSWM v6.7.2 [8] from the Oak Ridge
National Laboratory. These kernels resemble the performance of very popular
numerical algorithms which are widely adopted by many scientific and industrial
applications. A brief description of each analyzed kernel is provided in Table 1.

The analyzed kernels range from the simple Embarrassingly Parallel routine
(i.e., EP) consisting of 306 lines of C language up to a quite complex climate
model (i.e., pstswm) composed of 204 routines accounting for 30,055 lines of
Fortran 77.

Our approach to the benchmarking and performance evaluation of the IBM
NetFinity is based on an experimental approach. The actual performance achieved
by this machine has been measured by monitoring the executions of the testbed
kernels. Such a monitoring consists of collecting the times spent in computation
and communication activities by the main routines of each analyzed kernel. An
ad-hoc monitoring system has been developed in order to minimize the perturba-
tions, in kernel executions due to monitoring activities. We have then monitored
the execution of various kernels varying the number of processors allocated, the
problem size, the processor allocation policy, and the interconnection network.

Table 1: Overview of the analyzed kernels

Kernel Description

comms1 ping-pong communications between a pair of processors using
explicit send and receive directives. (ParkBench suite)

comms2 ping-pong communications between a pair of processors using full
duplex point-to-point data exchanges. (ParkBench suite)

BT multiple, independent, non diagonally dominant, block tridiagonal
equations iterative solver. (NAS suite)

EP integral computing by means of pesudorandom trials derived by
applying a typical Monte Carlo process. (NAS suite)

LU triangular factorization of a matrix by a SSOR relaxation schema.
(NAS suite)

MG V-cycle multigrid algorithm applied to a two dimensional discrete
Poisson problem. (NAS suite)

pstswm nonlinear shallow water equations on a rotating sphere.
(PSTSWM suite)

The measurements, collected by such a monitoring activity, have been analyzed
with the aim to benchmark the machine and to derive workload models [11, 13].
The derived performance figures have been related to machine and benchmark
characteristics.

Our methodology is based on a bottom-up characterization of the performance
of the Linux cluster. As a starting point, basic communication performance on
node-to-node communications will be analyzed. The performance of a few nu-
merical algorithms, such as those implemented by the NAS Parallel Benchmark
kernels have been investigated. Further insights into the performance of the ma-
chine are then derived by analyzing the behavior of a complex benchmark, that is,
the pstswm climate model simulation.

Note that our study is aimed at evaluating the behavior of production runs of
various kernels from measurements collected on testbed runs. The main differ-
ence between testbed and production runs is that testbed runs compute only a few
time steps of the solution. Hence, statistical techniques have been applied to mea-
sured timings in order to “sanitize” them, that is, to minimize the impact of non
deterministic random effects. Measurements have then repeated several times, de-
pending on individual kernel characteristics. Statistical outlier deletion, based on
the 99�� percentile, was then applied to these measures with the aim to discard
anomalous values. Mean values and coefficients of variation have been used to
analyzes the actual behavior of the phenomenon under investigation.
Performance models, summarizing the behavior of measured activities, have been
derived by means of statistical clustering techniques [17]. Each kernel execution
is then described by a component, that is, a tuple of parameters which represent

various timings and performance figures related to that execution. Clustering par-
titions all components into homogeneous groups, i.e., clusters, which are charac-
terized by similar parameters’ values. These cluster are described by both their
centroids, which are the averages of the component values and the correspond-
ing indices of variation (e.g., the standard deviations). Each centroid provides a
compact description of all the components belonging to its group. We have ap-
plied clustering techniques to identify executions with similar behaviors. These
behaviors have been related with machine and application parameters.

3 Performance Analysis

Communication cost, that is, the time spent by the processors in exchanging data,
is among the most critical factors which affect the overall performance of paral-
lel and distributed applications. Hence, as a preliminary step to benchmark the
Linux cluster we have analyzed the performance of basic MPI communication di-
rectives. The basic ping-pong communication kernels, from the ParkBench suite
have been used for such a purpose. In particular, we have analyzed the perfor-
mance of comms1 kernel which is based on blocking communication protocols,
that is, MPI Send and MPI Recv and the behavior of the comms2 kernel, based
on point-to-point data redistribution, that is, the MPI Sendrecv directive. In the
comms1 kernel, a processor (i.e., the master), sends a message to its neighbor
(i.e., the slave) which, in turn, after receiving the message sends it back to the
sender. Communication time, on a per message basis, is then derived by halving
the time elapsed on the master from the start of MPI Send to the end of the match-
ing MPI Recv. Note that since each IBM NetFinity node houses two processors,
the performance of the communication activities also depends on physical loca-
tion issues. Indeed, communications between processors located on the same node
(i.e., local processors) are based on shared memory paradigms. whereas commu-
nications among processors belonging to different nodes (i.e., remote processors)
are performed over the interconnection network. Communication libraries, such
as MPI, automatically uses of the most appropriate communication paradigms.
Figure 1 shows the communication times, as a function of the message size, for re-
mote ��� and local ��� processors. Red and green plot refer to communication over
Myrinet and Ethernet, respectively. Logarithmic scales have been used on both
axes to represent message size ranging from one byte up to 10MB and commu-
nication time varying from tens of microseconds up to hundreds of milliseconds.
From the figure it can be seen that Myrinet outperforms Ethernet in remote proces-
sors communications. Small messages, i.e., less than 100 bytes experience almost
only latency times, that is, about 18�� and 97�� for communication over Myrinet
and Ethernet, respectively. When exchanging large messages, i.e., about 100KB,
Myrinet is faster than Ethernet by a factor ranging from 5 to 15, depending on the
length of the message. We have noticed an unexpected result in the Myrinet behav-
ior: messages exchanged between local processors account for longer times with
respect to messages exchanged between remote processors. For example, commu-

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M 10M

T
im

e
(m

s)

Message size (bytes)

Communication time (remote processors)

Myrinet
Ethernet

���

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M 10M

T
im

e
(m

s)

Message size (bytes)

Communication time (local processors)

Myrinet
Ethernet

���

Figure 1: Communication times over Myrinet (red crosses) and Ethernet (green
stars) networks for both remote ��� and local ��� processors.

nication time for small messages between local processors are 10% longer than
for small messages between remote processors. This difference increases as mes-
sage size increases. Exchanging a message of 1MB of data when communication
take place between remote and local processors requires 6.23�� and 11.67��,
respectively.

Further insights into the behavior of the communication performance can be
derived by comparing the communication time accounted by explicit MPI Send
and MPI Recv directives with the corresponding time of the MPI Sendrecv direc-
tive. Figure 2 plots these times, on a per message size, for communication over
Myrinet. We noticed that the explicit MPI Send/MPI Recv directives achieve bet-

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M 10M

T
im

e
(m

s)

Message size (bytes)

MPI_Sendrecv
MPI_Send+MPI_Recv

Figure 2: Communication time, on a per message size basis, for MPI Sendrecv
(red crosses) and MPI Send and MPI Recv (green stars) over Myrinet

ter performance than MPI Sendrecv. Indeed, it experienced an overhead of about
20% with respect to explicit MPI Send and MPI Recv directives for message size
up to 10KB. As message size increases so does the difference in the performance.
For example, exchanging 10MB of data with MPI Send and MPI Recv requires
59.67��, whereas the corresponding MPI Sendrecv accounts for 136.41��.
Communications over Ethernet with MPI Sendrecv also result in a performance
loss. However such a performance loss is less marked, being in the order of about
8% for message up to 100KB.

As a further step towards the characterization of the performance of the Linux
cluster we have analyzed the behavior of the performance achieved by a few well
know numerical benchmarks. In particular, Section 3.1 presents the performance
analysis of a few numerical kernels from the NAS Parallel Benchmarks, whereas
the performance of the pstswm climate model is discussed in Section 3.2.

3.1 Performance analysis of a few numerical algorithms

The NAS Parallel Benchmarks is a well know suite of very popular numerical
algorithms which resemble the performance of the computational cores of many
industrial and scientific applications. In this section we present a detailed perfor-
mance study of a few NAS kernels with the aim at investigating the differences
in the performance behavior due to the characteristics of the interconnection net-
work. As a preliminary step we have analyzed the performance requirements of
these kernels. Table 2 provides a static description of the amount of computa-
tion performed by each kernel. As can be seen, the computing needs of the ker-

Table 2: Static characterization of analyzed NAS kernels.

Kernel Problem size Iterations MFLOP

BT 64�64�64 200 168275.6
EP 536870912 9 536.8
LU 64�64�64 250 119298.7
MG 256�256�256 4 3889.3

nels ranges from 536.8MFLOP, for the embarrassingly parallel EP kernel, up to
168.2GFLOP required by the BT equation solver. We have analyzed the execution
of each kernel over both Myrinet and Ethernet networks, varying the number of
allocated processors from 4 to 128.

Figure 3 plots the time spent in computation activities for each execution. The
color identifies the kernel, while the shape of the points refers to execution over
Myrinet (square) or over Ethernet (stars). Note that both the number of allocated
processors and the computation times are plotted with logarithmic scales. As can
be seen from the figure, the computation times accounted by the various kernels
scale proportionally with the number of processors allocated to their executions.
Indeed, these computation times can be approximated by:

�������� �
��

�

where �������� is the computation time, expressed in milliseconds, � is the number
of allocated processors (� � � � ���), and �� is the model parameter. The value
this parameter is derived for each kernel: �� � ���	���� for BT, �� � ������

for EP, �� � 	���	�� for EP, �� � ������
 for LU, and �� � �
���� for MG.
Such a parameter is related to the amount of computation to be distributed among
the allocated processors.

In order to get further insights into the behavior of the performance delivered
by the IBM NetFinity we have then focused our analysis on the times accounted for
communication activities by the four kernels. For such a purpose, Figure 4 shows,
for each kernel execution, the time spent in communication as a function of the
number of allocated processors. Colors and symbol shapes are used as in Figure 3.

0.1

1

10

100

1000

4 8 16 32 64 128

T
im

e
(m

s)

Number of processors

Computation time: Myrinet vs Ethernet

BT - Myrinet
BT - Ethernet
LU - Myrinet
LU - Ethernet
MG - Myrinet
MG - Ethernet
EP - Myrinet
EP - Ethernet

Figure 3: Computation times, as a function of the number of allocated processors,
accounted by each kernel executed over either Myrinet and Ethernet.

0.001

0.01

0.1

1

10

100

1000

4 8 16 32 64 128

T
im

e
(m

s)

Number of processors

Communication time: Myrinet vs Ethernet

BT - Myrinet
BT - Ethernet
LU - Myrinet
LU - Ethernet
MG - Myrinet
MG - Ethernet
EP - Myrinet
EP - Ethernet

Figure 4: Communication times, accounted by each kernel over either Myrinet or
Ethernet, as a function of the number of allocated processors.

Communications over Myrinet are at least 5 times faster that their Ethernet coun-
terparts for almost all kernel executions. A rather surprising result shown in the
figure is that, executions over Myrinet of the LU kernels with up to 32 allocated
processors experience longer communication times than their Ethernet counter-
parts. To explain this phenomenon we have analyzed the communication activities
performed by the LU executions. Two communication policies are responsible for
all data exchanges, namely blocking send/blocking receive and blocking send/non
blocking receives. Hence, all data is sent by the MPI Send directive, whereas
on the destination side, MPI Recv (i.e., blocking receive) and MPI Irecv together
with MPI Wait (i.e., non blocking receive) are used. In what follows we focus our
analysis to the executions with 8 processors. Figure 5 summarizes the volume of
data managed by each communication protocol. As can be seen from the figure,

50.0% Send (120MB)
15.9% Recv (38MB)
34.1% Irecv (82MB)

Figure 5: Volume of data transfered by each protocol.

most of the data is received with the non blocking communication protocol. The
kernel uses these communication protocols with very different message sizes. In-
deed, the average message size of MPI Recv is about 1KB, whereas MPI Irecv
collects messages with an average size of about 130KB.
The communication activities, presented in Figure 5 account for 166.20� and 38.73�
on execution over Myrinet and Ethernet, respectively.

Figure 6 shows the breakdown of the communication times on a per proto-
col basis. The percentage reported for each protocol refers to the fraction of the
overall communication time accounted by that protocol. The length of each bar
is proportional to the time accounted by the given protocol. The main difference
between the two executions is in the time spent by the MPI Recv protocol. In-
deed, in the execution over Myrinet such a protocol accounts for 137.1�, whereas
in the corresponding execution over Ethernet it accounts for 19.6� only. Note
that various factors are involved in these communication times, such as, the pecu-
liarities of the middleware communication software, hardware characteristics, the
physical location of the allocated nodes, as well as delays in the behavior of the
allocated processors. In order to derive further insights into the performance of the
communication protocols we have analyzed the behavior of the LU behavior with
larger numbers of processors allocated. For example, on the execution with 128

Breakdown of communication time

0 137.1102.868.634.3

5.1% Send
82.4% Recv

12.5% Irecv & Wait

14.8% Send

59.5% Recv
34.7% Irecv & Wait

Ethernet

Myrinet

Figure 6: Breakdown of the communication time accounted by executions of the
LU kernel with 8 processors over Myrinet and Ethernet.

processors the performance experienced by Myrinet is superior than its Ethernet
counterpart. Figure 7 shows the time spent in each communication protocol for
such an execution over both the interconnection networks.

The performance of MPI Recv over Myrinet is greatly increased in the exe-
cution with 128 processors with respect to the 8 processors one. In the execution
with 128 processors MPI Recv occurred about 56,000 times with an average mes-
sage size of 235 bytes. We can identify in the reduction of the message size a
possible explanation of this very different performance behavior. This conclusion
is also substantiated by the comparison with the performance achieved by the ex-
ecution of the LU kernel with 4 processors. In this execution MPI Recv occurred
31,000 times for collecting messages of about 1240 bytes. When this communica-
tion protocol is used over Myrinet its performance is about 10 time worse than its
performance over Ethernet.

3.2 Performance Analysis of a climate benchmark

The performance achieved by real-live applications relies on the complex iterations
of their embedded algorithms. In this section we discuss the behavior of the IBM
Linux cluster on a complex climate model benchmark, that is, the pstswm kernel
from the Oak Ridge National Laboratory. Many numerical algorithms, including
distributed FFT, Gaussian integrations, and spectral transformation methods are
used to solve the non linear shallow water equations. Performance figures related
to various testbed simulations, varying the size of the physical grid, the number
of simulated time steps, as well as the number of allocated processors, have been
analyzed. In particular, we have analyzed grid size ranging from 128�64�NVER

Breakdown of communication time

0

Ethernet

Myrinet

2.4 4.9 7.3 9.8

13.5% Irecv & Wait

27.6% Irecv & Wait

6.9% Send

65.5% Recv

76.6% Recv
9.9% Send

Figure 7: Breakdown of the communication time accounted by executions of the
LU kernel with 128 processors over Myrinet and Ethernet.

to 512�128�VER, with NVER being the number of vertical levels and varying
from 1 to 16. The performance requirement for simulating one time step of these
two grid bounds with NVER=1 is 4MFLOP and 153MFLOP, respectively.

As a preliminary overview of the performance achieved by the Linux cluster,
we have benchmarked the machine with a set of simulations varying the simulation
grid and the number of time steps. Figure 8 shows the computation and commu-
nication times accounted by the full set of benchmarks (i.e., 76 simulations), as a
function of the number of processors allocated to the benchmark executions over
both Myrinet and Ethernet. Color identifies the interconnection network (red for
Myrinet and green for Ethernet), whereas crosses and stars refer to computation
and communication times, respectively. Computation times accounted over both
the two interconnection network are identical. On the other hand, there is a large
difference (i.e., a factor of about five) in the times spent in communication ac-
tivities over the two interconnection networks. The longer communication times
for kernel executions over Ethernet limit the number of processors to be allocated.
Indeed, allocating more than 64 processors does not lead to any performance im-
provement.

Figure 9 shows the breakdown of execution times of each analyzed simula-
tion. Timings are related to an execution with 32 processors over Myrinet. Colors
highlight the contributions due to computation (blue) and communication activi-
ties (red). Problem IDs ranging from 1 to 16 refer to small grid (e.g., 128�64)
simulations in which the number of vertical levels is varied from 1 to 16. Prob-
lem IDs from 17 up to 32 refer to the longer simulations of these grids. Problems
from 33 to 64 are similar to problems 1 to 32 but with intermediate grid (e.g.,
256�128), whereas IDs from 65 to 70 refer to large grids (e.g., 512�256). The

10

100

1000

10000

4 8 16 32 64 128

T
im

e
(s

)

Number of allocated processors

PSTSWM: communication and computation times

Myrinet: computation
Myrinet: communication

Ethernet: computation
Ethernet: communication

Figure 8: Computation and communication times as a function of the number of
allocated processors.

last 6 problems refer to small grid with different physical simulation parameters.
Several performance parameters have been measured for each simulation. These
measures have then been normalized by considering their averages on a per sim-
ulation time step basis. We have applied statistical clustering to the measures
collected on all the 456 simulations executed varying the number of allocate pro-
cessors from 4 up to 128. Two clusters characterize all the simulations executed
over either Myrinet or Ethernet. Table 3 presents the centroids of each cluster.
The parameters n sim, n comms, and ndata refer to the number of simulation
within each cluster, and to the average number of communications and to the aver-
age volume of exchanged data, in each of these simulations. Time parameters, that
is, �����, ���	
, and ����� refer to the average time accounted by each simulation

Table 3: Centroids of the identified clusters.

Myrinet Ethernet
Cluster 1/2 Cluster 2/2 Cluster 1/2 Cluster 2/2

n sim 384 72 408 48
����� 52.65 642.13 68.00 862.07
����� 5.43 30.20 14.25 30.57
�	��
 3.38 210.58 24.54 953.30
n comms 90 37 88 29
ndata (MB) 1.59 9.53 1.83 11.44

Computation
Communication

0

10

20

30

40

50

60

0 10 30 4020 50 60 70

Problem ID

T
im

e
(s

)

Figure 9: Computation and communication times for all the analyzed problems for
an execution of the pstswm over Myrinet with 32 processors.

for computing, transmitting, and receiving activities, respectively.
From the table, we can see that most of the simulations (both on Myrinet and

Ethernet executions) are grouped in the first cluster. These simulations are charac-
terized by short computation and communication times. Nevertheless, these sim-
ulations issue a larger number of communication directives with respect to their
Cluster 2 counterparts. In turn, although the simulations within Cluster 2 issue
fewer communications they exchange about 6 times the volume of data exchanged
by the simulations within Cluster 1.

4 Overheads of Processor Allocation Policies

As a further characterization of the performance achieved by the IBM NetFin-
ity cluster, we have studied the impact of the processor allocation policies on the
various kernel execution times. As previously stated, the cluster consists of 260
nodes, each of them housing two processors. MPI applications, in turn, are com-
posed of tasks to be allocated to the various processors. Two allocation policies
are thus available: either one or two application tasks can be assigned to each
node. When one task only is assigned to each node, both processors might concur
to the execution of such a task. Indeed, when a task requires operating system

calls, they might activate some concurrent processes/threads. In this case, the op-
erating system will then schedule all these processes/threads on both processors.
For example, communication routines might require network daemon services for
managing the communication activities, such as, in the p4 parallel programming
library used for communications over Ethernet.

We have seen that the behavior of the embarrassingly parallel EP kernel over
Myrinet does not experience any significative performance difference between the
two allocation policies until a large number of processors is allocated. Indeed,
we have noticed that varying the allocation policies results in differences smaller
than 5% of the overall execution time. On the other hand, runs with more then
32 processors, experience a dramatic increase of the wall clock times when both
the processors available on each node are allocated. For example, a run with 64
nodes (i.e., 128 processors) is characterized by an overall execution time of ������,
whereas the execution times decreases to ����	� in a run with 128 processors over
128 nodes. This difference is not explained in terms of a decrease of the communi-
cation time that is equal to ����� and ���, respectively. Pure computation time,
such as, the time spent by EP in computing Gaussian deviates, increases of about
12% in runs with 64 nodes. Such an increase can be explained in terms of both
the contentions due to accesses to the memory which is shared among the two pro-
cessors of each node, and the concurrent execution of operating system processes.
It is worth noting that when a node has a “spare” processor, such a processor can
be used to execute operating system processes. Hence, being fixed the number
of allocated nodes, the benefit of sharing the computation among all the available
processors might not lead to any performance improvement. For example, allo-
cating 64 processors on 64 nodes results in an wall clock time of ������, whereas
allocating all the 128 processors available on the considered 64 nodes results in an
increased wall clock time of ������.

Runs of EP over Ethernet also lead to similar results, although significant per-
formance degradations are experienced with smaller numbers of processors. For
example, runs with 32 processors over 16 and 32 nodes results in wall clock times
of ������ and ������, respectively.

Figure 10 shows the profiling of two runs of the BT kernel with 100 proces-
sors. For each run, the figure shows the four most time consuming routines, which
account for 99% of the overall execution time. The size of the problem solved
by each run is the same, that is, a 162�162�162 matrix. The two runs differ in
the number of node the allocated processors belong to, that is, 100 and 50 nodes,
respectively.

Note that the run on 50 nodes is 44% longer than the run on 100 nodes. As
can be seen from the figure, this difference is mainly due to increases in the times
spent in computation activities. Contentions for memory access within each node
are responsible for this performance degradation.

Figure 10: Profiling and breakdown of the execution times in their computation
and communication components of two BT runs with 100 processors,
allocated on 50 and 100 nodes, respectively.

5 Conclusions

Cluster computing has emerged as a viable alternative to massively parallel super-
computers to cope with the computing demands of scientists and HPC application
developers. In this paper we have presented an experimental evaluation study of
the performance that a typical cluster machine actually delivers to scientific and
industrial applications. Statistical techniques, such as clustering and fitting, have
been used to characterize the actual performance of the machine.

In particular, we have investigated the performance of a few numerical algo-
rithms, as well as the impact of different processor allocation policies on their
performance. As a rule of thumb, Myrinet outperforms the standard Ethernet in-
terconnection network. However, when a large number of messages is simultane-
ously exchanged among a few processors Myrinet experiences severe performance
degradations. An in depth analysis of this phenomenon has identified that the per-
formance of simultaneously concurrent blocking receives over Myrinet is strongly
influenced by the size of exchanged messages. Note that as already stated various
factors, such as hardware, software and synchronization issues are responsible for
such an unexpected outcome.

Another rather surprising outcome has been derived from our analysis: com-
munications between processors housed in the same node take longer times than
communication between processors located in different nodes. Performance issues
related to the Intel SMP architecture are responsible for such a phenomenon.

Finally, experimental measures collected during the execution of various bench-
marks have substantiated that allocating all the processors available on each node
results in performance losses.

Future work will be dedicated to the performance characterization of Linux
clusters under more complex real live applications, as well as, to characterize the

performance of different processor architecture, such as, AMD Athlon.

Acknowledgments

This work was partially supported by the Italian Research Council (CNR) under
the Project “Agenzia 2000 - Progetto Giovani”. This research, in part conducted
at the Maui High Performance Computing Center, was also sponsored in part by
the Air Force Research Laboratory, Air Force Materiel Command, USAF, under
cooperative agreement number UNIVY-0282-U00. The views and conclusions
contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Research Laboratory, the U.S. Government, the Univer-
sity of Hawaii, or the Maui High Performance Computing Center.

References

[1] R. Alfieri et al. Status of APE projects. Nuclear Physics B, 94, pp. 846–853,
2001.

[2] T. Anderson, D. Culler, D. Patterson, & the NOW Team. A Case for NOW
(Networks of Workstations). IEEE Micro, 15(1), pp. 54–64, 1995.

[3] E. B. Bal et al. The Distributed ASCI supercomputer project. Operating
Systems Review, 34(4), pp. 76–96, 2000.

[4] A. Barak, I. Gilderman, & I. Metrik. Performance of the communication
layers of TCP/IP with the Myrinet gigabit LAN. Computer Communications,
22(11), pp. 989–997, 1999.

[5] A. Barak & O. La’adan. The MOSIX multicomputer operating system for
high performance cluster computing. Future Generation Computer Systems,
13(4–5), pp. 361–372, 1998.

[6] The Beowulf Project. http://www.beowulf.org, 2001.

[7] The Berkeley Network of Workstations. http://now.cs.berkeley.edu, 2002.

[8] J. Brehm, P.H. Worley, & M. Madhukar. Performance modeling for SPMD
message-passing programs. Concurrency: Practice & Experience, 10(5), pp.
333–357, 1998.

[9] R. Brightwell & S. Plimpton. Scalability and Performance of Two Large
Linux Clusters. Journal of Parallel and Distributed Computing, 61(11), pp.
1546–1569, 2001.

[10] R. Butler & W. Lusk. Monitors, Messages, and Clusters: The p4 Parallel
Programming System. Parallel Computing, 20(4), pp. 547–564, 1994.

[11] M. Calzarossa, L. Massari, & D. Tessera. Workload Characterization - Issues
and Methodologies. In G. Haring, C. Lindemann & M. Reiser, eds., Perfor-
mance Evaluation - Origins and Directions, volume 1769 of Lecture Notes
in Computer Science, pp. 459–484. Springer-Verlag, 2000.

[12] F. Cappello, O. Richard, & D. Etiemble. Understanding performance of SMP
cluster running MPI programs. Future Geenration Computer Systems, 17(6),
pp. 711–720, 2001.

[13] D. Feitelson. Workload Modeling for Performance Evaluation. In
M. Calzarossa & S. Tucci, eds., Performance Evaluation of Complex Sys-
tems: Techniques and Tools, volume 2459 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[14] S. Donaldson, J. Hill, & D. Skillicorn. BSP clusters: High performance,
reliable and very low cost. Parallel Computing, 26(2–3), pp. 199–242, 2000.

[15] S. Gottlieb. Cost-effective clustering. Computer Physics Communications,
—bf 142, pp. 32–48, 2001.

[16] A.D Grimshaw, A. Ferrari, F. Knabe, & M. Humphrey. Wide area computing:
resource sharing on a large scale. IEEE Computer, 32(5), pp. 29–37, 1999.

[17] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[18] R. Hockney & M. Berry. Public International Benchmarks for Parallel Com-
puters: PARKBENCH Committee Report-1. Scientific Computing, 3(2), pp.
101–146, 1994.

[19] J. Hsieh, T. Leng, V. Mashayekhi, & R. Rooholamini. Architectural and
Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters
of Small-Scale SMP Servers. In Proceedings of Supercomputing 2000. IEEE
Computer Society Press, 2000.

[20] L. P. Huse & H. Bugge. High-End Computing on SHV Workstations Con-
nected with High Performance Network. Lecture Notes in Computer Science,
1947, pp. 324–331, 2001.

[21] Cluster Computing White Paper.
http://www.dcs.port.ac.uk/�mab/tfcc/WhitePaper/final-paper.pdf, 2000.

[22] The Maui Scheduler Open Cluster Software.
http://mauischeduler.sourceforge.net, 2002.

[23] Maui High Performance Computing Center. http://www.mhpcc.edu, 2002.

[24] Guide to Myrinet-2000 Switches and Switch Networks.
http://www.myri.com, 2001.

[25] IBM Redbooks. Linux HPC Cluster Installation. http://ibm.com/redbooks,
2001.

[26] T. Ridge, D. Becker, P. Merkey, & T. Sterling. Beowulf: Harnessing the
Power of Parallelism in a Pile-of-PCs. In Aerospace Conference, volume 2,
pp. 79–91. IEEE Press, 1997.

[27] V. Sunderam, J. Dongarra, A. Geist, & R. Manchek. The PVM Concurrent
Computing System: Evolution, Experiences, and Trends. Parallel Comput-
ing, 20(4), pp. 532–547, 1993.

[28] S. Vazhkudai, J. Syed, & T. Maginnis. PODOS - The design and implemen-
tation of a performance oriented Linux cluster. Future Generation Computer
Systems, 18(1), pp. 335–352, 2002.

[29] D. Womble, S. Dosanjh, B. Hendrickson, M. Heroux, S. Plimpton,
J. Tomkins, and D. Greenberg. Massively parallel computing: A Sandia
perspective. Parallel Computing, 25(13–14), pp. 1853–1876, 1999.

[30] M. Yarrow, A. Woo, R. Wijngaart, & W. Saphir. New NAS Parallel Bench-
marks Resulst. In Proceedings of Supercomputing’97. ACM SIGARCH and
IEEE, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

