Load Imbalance in Parallel Programs *

Maria Calzarossa, Luisa Massari, and Daniele Tessera

Dipartimento di Informatica e Sistemistica,
Universita di Pavia,
1-27100 Pavia, Italy,
{mcc,massari,tessera}@unipv.it

Abstract. Parallel programs experience performance inefficiencies as a
result of dependencies, resource contentions, uneven work distributions
and loss of synchronizations among processors. The analysis of these
inefficiencies is very important for tuning and performance debugging
studies. In this paper we address the identification and localization of
performance inefficiencies from a methodological viewpoint. We follow a
top down approach. We first analyze the performance properties of the
programs at a coarse grain. We then study the behavior of the processors
and their load imbalance. The methodology is illustrated on a study of
a message passing computational fluid dynamic program.

1 Introduction

The performance achieved by a parallel program is the result of complex inter-
actions between the hardware and software resources involved in its execution.
The characteristics of the program, that is, its algorithmic structure and input
parameters, determine how it can exploit the available resources and the allo-
cated processors. Hence, tuning and performance debugging of parallel programs
are challenging issues [11].

Tuning and performance debugging typically rely on an experimental ap-
proach based on instrumenting the program, monitoring its execution and ana-
lyzing the performance measures either on the fly or post mortem. Many tools
have been developed for this purpose (see e.g., [1], [2], [5], [12], [13], [14]). These
tools analyze the behavior of the various activities of a program, e.g., computa-
tion, communication, synchronization, by means of visualization and statistical
analysis techniques. Their major drawback is that they fail to assist users in
mastering the complexity inherent in the analysis of parallel programs.

Few tools focus on the analysis of parallel programs with the aim of identi-
fying their performance bottlenecks, that is, the code regions critical from the
performance viewpoint. The Poirot project [6] proposed a tool architecture to
automatically diagnose parallel programs using a heuristic classification scheme.

* This work has been supported by the Italian Ministry of Education, University and
Research (MIUR) under the FIRB Programme, by the University of Pavia under
the FAR Programme and by the Italian Research Council (CNR).



The Paradyn Parallel Performance tool [9] dynamically instruments the pro-
grams to automate bottleneck detection during their execution. The Paradyn
Performance Consultant starts a hierarchical search of the bottlenecks, defined
as the code regions of the program whose performance metrics exceed some pre-
defined thresholds. The automated search performs a stack sampling [10] and
a pruning of the search space based on historical performance and structural
data [7].

In this paper we address the analysis of the performance inefficiencies of par-
allel programs from a methodological viewpoint. We study the behavior and the
performance properties of the programs with the aim of detecting the symptoms
of performance problems and localizing where they occurred. Our methodology
is based on the definition of performance metrics and on the use of a few criteria
able to explain the performance properties of the programs and the inefficiencies
due to load imbalance among the processors.

The paper is organized as follows. Section 2 introduces the metrics and cri-
teria for the evaluation of the overall behavior of parallel programs. Section 3
focuses on the analysis of the behavior of the allocated processors. An applica-
tion of the methodology is presented in Section 4. Finally, Section 5 concludes
the paper and outlines guidelines towards the integration of our methodology
into a performance analysis tool.

2 Performance Properties

Tuning and debugging the performance of a parallel program can be seen as an
iterative process consisting of several steps, dealing with the identification and
localization of inefficiencies, their repair and the verification and validation of
the achieved performance.

As already stated, our objective is to address the performance analysis pro-
cess by focusing on the identification and localization of performance inefficien-
cies. We follow a top down approach in which we first characterize the overall
behavior of the program in terms of its activities, e.g., computation, communi-
cation, synchronization, memory accesses, I/O operations. We then analyze the
various code regions of the program, e.g., loops, routines, code statements, and
the activities performed within each region.

The characterization of the performance properties and inefficiencies of the
program is based on the definition of various criteria. In this section, we define
the criteria that identify the dominant activities and the dominant code regions
of the program. Next section is dedicated to the identification of inefficiencies
due to dissimilarities in the behavior of the processors.

The performance of a parallel program is characterized by timings parame-
ters, such as, wall clock times, as well as counting parameters, such as, number
of I/O operations, number of bytes read/written, number of memory accesses,
number of cache misses. Note that, not to clutter the presentation, in what
follows we focus on timings parameters.



Let N denote the number of code regions of the parallel program, K the
number of its activities, and P the number of allocated processors. tijp, (i =
1,2,..,N;j=1,2,...,K; p=1,2,..., P) is the wall clock time of processor p in
the activity j of the code region 4. ¢;; (¢ = 1,2,...,N; j = 1,2,...,, K) is the wall
clock time of the activity j in the code region i, that is:

Similarly, ¢; (¢ = 1,2,...,N) is the wall clock time of the code region i, T}
(j =1,2,...,K) is the wall clock time of the activity j, and T is the wall clock
time of the whole program.

A preliminary characterization of the performance of a parallel program is
based on the breakdown of its wall clock time T into the times T}, (j = 1,2, ..., K)
spent in the various activities. The activity with the maximum Tj is defined as
the dominant, that is, “heaviest”, activity of the program, and could correspond
to a performance bottleneck.

The analysis of the code regions is aimed at identifying the portions of the
code where the program spends most of its time. The region with the maxi-
mum wall clock time, i.e., the heaviest region, might correspond to an inefficient
portion of the program or to its core.

A refinement of this analysis is based on the breakdown of the wall clock
time ¢; into the times ¢;; spent in the various activities. It might be difficult to
understand which activity better explains the behavior and the performance of
the program. We can identify the code region characterized by the maximum
time in the dominant activity of the program. Moreover, for each activity j we
can identify the worst and the best code regions, that is, with the maximum and
minimum ¢;;, respectively. This analysis results in a large amount of information.
Hence, it is useful to summarize the properties of the program by identifying
patterns or groups of regions characterized by a similar behavior. Clustering
techniques [4] work for this purpose. Each code region i is described by its wall
clock times ¢;; and is represented in a K —dimensional space. Clustering partitions
this space into groups of code regions with homogeneous characteristics such that
the candidates for possible tuning are identified.

3 Processor Dissimilarities

The coarse grain analysis of the performance properties of parallel programs is
followed by a fine grain analysis that focuses on the behavior of the processors
with the objective of studying their load imbalance.

Load balancing is an ideal condition for a program to achieve good performance
by fully exploiting the benefits of parallel computing. Programming inefficiencies
might lead to uneven work distributions among processors. These distributions
then lead to poor performance because of the delays due to loss of synchroniza-
tion, dependencies and resource contentions among the processors.



Our methodology analyzes whether and where a program experienced poor
performance because of load imbalance. For this purpose, we study the dis-
similarities in the behavior of the processors with the aim of identifying the
symptoms of uneven work distributions. In particular, we study the spread of
the ¢;5,’s, that is, the wall clock times spent by the various processors to perform
activity j within code region i. As a first step, we need to define the metrics that
detect and quantify dissimilarities and the criteria that assess their severity.

The metrics for evaluating the dissimilarities rely on the majorization the-
ory [8], which provides a framework for measuring the spread of data sets. Such
a theory is based on the definition of indices for partially ordering data sets
according to the dissimilarities among their elements. The theory allows the
identification of the data sets that are more spread out than the others. Dis-
similarities can be measured by different indices of dispersion, such as, variance,
coefficient of variation, Euclidean distance, mean absolute deviation, maximum,
sum of the elements of the data sets. The choice of the most appropriate index
of dispersion depends on the objective of the study and on the type of physical
phenomenon to be analyzed. In our study, the index of dispersion has to measure
the spread of the times spent by the processors to perform a given activity with
respect to the perfectly balanced condition, where all processors spend exactly
the same amount of time. The Euclidean distance between the time of each
processor and the corresponding average is then well suited for our purpose.

Once the metrics to quantify dissimilarities have been defined, it is necessary
to select the criteria for their ranking. The choice of the most appropriate crite-
rion to assess the severity of the load imbalance among processors depends on
the level of details required by the analysis. Possible criteria are the maximum of
the indices of dispersion, the percentiles of their distribution, or some predefined
thresholds.

The analysis of dissimilarities can then be summarized by the following steps:

— standardization of the wall clock times;
— computation of the indices of dispersion;
— ranking of the indices of dispersion.

Note that as the indices of dispersion have to provide a relative measure of
the spread of the wall clock times, the first step of the methodology deals with
a standardization of the wall clock times of each code region. As we will see, the
standardized times are such that they sum to one, that is, they are obtained by
dividing the wall clock times by the corresponding sum.

The second step of the methodology deals with the computation of the various
indices of dispersion. In particular, our analysis focuses on three different views,
namely, processor, activity, and code region. These views provide complementary
insights into the behavior of the processors as they correspond to the different
perspectives used to characterize a parallel program.

Once the indices of dispersion have been computed for the various views, their
ranking allows us to identify processors, activities and code regions characterized
by large dissimilarities which could be chosen as candidates for performance
tuning.



3.1 Processor View

Processor view is aimed at analyzing the behavior of the processors across the
activities performed within each code region with the objective of identifying
the most frequently imbalanced processor. We describe the dissimilarities of
each code region with P indices of dispersion I.D_F;,, one for each processor.
These indices are computed as the Euclidean distance between the times spent
by processor p on the various activities performed within code region i and the
average time of these activities over all processors:

ID_P, =

Note that the #;;,’s are obtained by standardizing the ¢;;,’s over the sum of the
times spent by each processor in the various activities performed within a given
code region. Tij denotes the corresponding average.

From the various indices of dispersion, we can identify the processors that
have been most frequently imbalanced and imbalanced for the longest time.

3.2 Activity View

Activity view analyzes dissimilarities within the activities performed by the pro-
cessors across all the code regions with the objective of identifying the most
imbalanced activity. We first quantify the dissimilarities in the times spent by
the various processors to perform a given activity within a code region. Let ID;;
be the index of dispersion computed as the Euclidean distance between the times
spent by the various processors to perform activity j within code region ¢ and
their average. We then summarize the ID;;’s to identify and localize the activity
characterized by the largest load imbalance.

ID_A; is the relative measure of the load imbalance within the activity j
and is obtained as the weighted average of the ID;;’s. The weights represent
the fractions of the overall wall clock time accounted by activity 7 within code
region ¢, that is, tTA As activities with large dissimilarities might have a negligible
impact on the overall performance of the program because of their short wall
clock time, we scale the index of dispersion ID_A; according to the fraction of
the program wall clock time accounted by the activity itself, namely:

SID_A; = % ID_A; .

The scaled indices of dispersion SID_A; allow us to identify the activities char-
acterized by large dissimilarities and accounting for a significant fraction of the
wall clock time of the program.



3.3 Code region View

Code region view analyzes the dissimilarities with respect to the various activities
performed by the processors within each region with the objective of identifying
the most imbalanced region. The computation of the dissimilarities is based on
the ID;;’s defined in the activity view. I.D_C; is a relative measure of the load
imbalance within code region i, and is obtained as the weighted average of the
ID;;’s with respect to ttﬁ, that is, the fraction of the wall clock time of the code
region accounted by activity j. As in the activity view, we scale the index of
dispersion ID_C; with respect to the fraction of the program wall clock time

accounted by code region i, i.e., tT and we obtain the scaled index SID_Cj;.

4 Application Example

In this section we illustrate our methodology on the analysis of the performance
inefficiencies of a message passing computational fluid dynamic code. We fo-
cus on an execution of the program on P = 16 processors of an IBM Sp2. The
measurements refer to 7 code regions corresponding to the main loops of the pro-
gram. Moreover, within each region, four activities have been measured, namely,
computation, point-to-point communications (i.e., MPI_SEND, MPI_RECV), collec-
tive communications (i.e., MPI_REDUCE, MPI_ALLTOALL), and synchronizations
among processors (i.e., MPI_BARRIER). In what follows, we identify the loops of
the application with a number, from 1 to 7.

Table 1 presents the wall clock time of each loop with the corresponding
breakdown into the wall clock times of its activities. By profiling the program,
that is, by looking where the time is spent, we notice that the heaviest loop,
that is, loop 1, accounts for about 27% of the overall wall clock time. This loop,
which corresponds to the core of the program, is characterized by the longest
time in computation, that is, the dominant activity of the program, as well as
in collective communications and synchronizations, whereas it does not perform
any point-to-point communication. The loop which spends the longest time in
point-to-point communications is loop 3. Moreover, only three loops perform
synchronizations.

For a more detailed analysis of the behavior of the loops we applied the k-
means clustering algorithm [4]. Each loop is described the wall clock times it
spent in the various activities. Clustering yields a partition of the loops into two
groups. The heaviest loops of the program, that is, loops 1 and 2, belong to one
group, whereas the remaining loops belong to the second group.

To gain better insights into the performance properties of the program and
to study the dissimilarities in the processor behavior, we analyzed the wall clock
times spent by the processors to perform the various activities. Figures 1 and
2 show the patterns of the times spent in computation and point-to-point com-
munications activities, respectively. The patterns are plotted for each loop sepa-
rately, namely, each row refers to one loop. Different colors are used to highlight
the patterns.



Table 1. Overall wall clock time, in seconds, of the loops and corresponding breakdown

loop . Wall clock. time . _
overall [computation|point-to-point|collective|synchronization
1 |19.051 12.24 - 6.75 0.061
2 | 14.22 7.90 - 6.32 -
3 |10.90 5.22 5.68 - -
4 110.54 8.03 2.51 - -
5 9.041 7.53 0.07 1.43 0.011
6 0.692 0.36 0.33 - 0.002
7 0.31 0.28 - 0.03 -

The four colors used in the figures refer to the maximum and minimum values
of the wall clock times of the loop and to values belonging to the lower and upper
15% intervals of the range of the wall clock times, respectively. Note that the
diagrams plot only the loops performing the activity shown by the diagram itself.

computation
1 o |
Y] | [
Loy ] (] B L 0 I ) ) ] 1 — T
[oops | [ [ [ A =T
[ [ [ [ | Yoo [ o [ =
o e | e o | |
N | o o |

Fig. 1. Patterns of the times spent by the processors in computation

point—to—point communications

Legend
1 e o s O] | |
COoOoCooOOoOmooooooom | | o
5 s Y =S
[ )

Fig. 2. Patterns of the times spent by the processors in point-to-point communications

As can be seen, the behavior of the processors within and across the various loops
and activities is quite different. By analyzing the patterns shown in Figure 1, we
notice that the times spent in computation by five out of 16 processors executing
loop 4 belong to the upper 15% interval, whereas on loop 6 the times of 11 out
of 16 processors belong to the lower 15% interval. From Figure 2 we can notice



that the behavior of the processors executing point-to-point communications is
very balanced.

These figures provide some qualitative insights into the behavior of the pro-
cessors, whereas they lack in providing any quantitative description of their
dissimilarities. To quantify the dissimilarities, we standardized the wall clock
times and computed the indices of dispersion as defined in Section 3. From the
analysis of the processor view, we have discovered that processor 1 is the most
frequently imbalanced as it is characterized by the largest values of the index of
dispersion on two loops, namely, loops 3 and 7. Processor 2 is imbalanced for the
longest time. This processor is the most imbalanced on one loop only, namely,
loop 1, with an index of dispersion equal to 0.25754 and a wall clock time equal
to 15.93 seconds.

For the analysis of the activity and code region views, we have computed the
indices of dispersion ID;; presented in Table 2. As can be seen, the behavior
of the processors is highly imbalanced when performing synchronizations. The
value of the index of dispersion corresponding to loop 5 is equal to 0.30571.
Loop 1 is the most imbalanced with respect to the times spent by the processors
for performing collective communications, whereas loop 6 is characterized by the
largest indices of dispersion in two activities, namely, computation and point-
to-point communications.

Table 2. Indices of dispersion ID;; of the activities performed by the loops

loop|computation|point-to-point|collective|synchronization
1 0.03674 - 0.06793 0.12870
2 0.01095 - 0.00318 -
3 0.00672 0.02833 - -
4 0.01615 0.10742 - -
5 0.00933 0.08872 0.04907 0.30571
6 0.05017 0.23200 - 0.16163
7 0.00719 - 0.01138 -

To summarize the values of Table 2 by taking into account the relative weights
of the wall clock times of the activities and of the loops, we computed the
weighted average of the ID;;’s. Tables 3 and 4 present the values of the indices
of dispersions ID_A; and ID_C; computed for the activities and the loops, re-
spectively. The tables also present the indices SID_A; and SID_C; scaled with
respect to the fraction of the wall clock time accounted by each activity or loop,
respectively.

As can be seen from Table 3, the synchronization is the most imbalanced
activity. However, as it accounts only for 0.1% of the wall clock time of the
program, its impact on the overall performance is negligible. Hence, this activity
does not seem a suitable candidate for tuning, as also denoted by the value of
the scaled index of dispersion which is equal to 0.00016.



Table 3. Summary of the indices of dispersion of the activity view

activity ID_A |SID_A
computation  [0.01904(0.01132
point-to-point |0.05973|0.00734
collective 0.03781(0.00786
synchronization|0.15559(0.00016

Table 4. Summary of the indices of dispersion of the code region view

loop| ID_C |SIDC

1 (0.04809|0.01311
0.00750{0.00152
0.01798|0.00280
0.03790(0.00571
0.01655(0.00214
0.13734|0.00135
0.00760|0.00003

| O U = W] N

From the analysis of the summaries presented in Table 4, we can conclude

that loop 6 is the most imbalanced. The value of its index of dispersion is equal
to 0.13734. However, as this loop accounts for a very short wall clock, the value
of the corresponding scaled index of dispersion is equal to 0.00135 only.
These metrics help the users in deciding which loop is the best candidate for
performance tuning. In our study loop 1 is a good candidate as it is the core
of the program and it is also characterized by large values of both the index of
dispersion and its scaled counterpart.

5 Conclusions

The analysis of performance inefficiencies of parallel programs is a challenging
issue. Users do not want to browse too many diagrams or, even worse, to dig
into the tracefiles collected during the execution of their programs. They expect
from performance tools answers to their performance problems. Thereby, tools
should do what expert programmers do when tuning their programs, that is,
detect the presence of inefficiencies, localize them and assess their severity.

The identification and localization of the performance inefficiencies of parallel
programs are preliminary steps towards an automatic performance analysis. The
methodology presented in this paper is aimed at isolating inefficiencies and load
imbalance within a program by analyzing performance measurements related to
its execution. From the measurements we derive various metrics that guide users
in the interpretation of the behavior and of the performance properties of their
programs.



As a future work, we plan to define and test new criteria for the identification
and localization of performance inefficiencies. Hence, we will analyze measure-
ments collected on different parallel systems for a large variety of scientific pro-
grams [3]. Moreover, we plan to integrate our methodology into a performance
tool.

References

1. M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and D. Tessera. Medea: A Tool
for Workload Characterization of Parallel Systems. IEEE Parallel and Distributed
Technology, 3(4):72-80, 1995.

2. L. DeRose, Y. Zhang, and D.A. Reed. SvPablo: A Multi-Language Performance
Analysis System. In R. Puigjaner, N. Savino, and B. Serra, editors, Computer
Performance Evaluation - Modelling Techniques and Tools, volume 1469 of Lecture
Notes in Computer Science, pages 352-355. Springer, 1998.

3. K. Ferschweiler, S. Harrah, D. Keon, M. Calzarossa, D. Tessera, and C. Pancake.
The Tracefile Testbed - A Community Repository for Identifying and Retriev-
ing HPC Performance Data. In Proc. 2002 International Conference on Parallel
Processing, pages 177-184. IEEE Press, 2002.

4. J.A. Hartigan. Clustering Algorithms. Wiley, 1975.

5. M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEFE Software, 8:29-39, 1991.

6. B. Helm, A. Malony, and S. Fickas. Capturing and Automating Performance Di-
agnosis: the Poirot Approach. In Proceedings of the 1995 International Parallel
Processing Symposium, pages 606—613, 1995.

7. K.L. Karavanic and B.P. Miller. Improving Online Performance Diagnosis by the
Use of Historical Performance Data. In Proc. SC’99, 1999.

8. A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applica-
tions. Academic Press, 1979.

9. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K.H. Hollingsworth, R.B. Irvin, K.L.
Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Measure-
ment Performance Tool. IEEE Computer, 28(11):37-46, 1995.

10. P.C. Roth and B.P. Miller. Deep Start: A Hybrid Strategy for Automated Perfor-
mance Problem Searches. In Proc. 8th International Euro-Par Conference, volume
2400 of Lecture Notes in Computer Science, pages 86-96. Springer, 2002.

11. M.L. Simmons, A.H. Hayes, J.S. Brown, and D.A. Reed, editors. Debugging and
Performance Tuning for Parallel Computing Systems. IEEE Computer Society,
1996.

12. W. Williams, T. Hoel, and D. Pase. The MPP Apprentice Performance Tool: Deliv-
ering the Performance of the Cray T3D. In K.M. Decker, editor, Programming En-
vironments for Massively Parallel Distributed Systems, pages 333-345. Birkhauser
Verlag, 1994.

13. J.C. Yan and S.R. Sarukkai. Analyzing Parallel Program Performance Using Nor-
malized Performance Indices and Trace Transformation Techniques. Parallel Com-
puting, 22(9):1215-1237, 1996.

14. O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scalable Performance Visual-
ization with Jumpshot. The International Journal of High Performance Computing
Applications, 13(2):277-288, 1999.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


