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ABSTRACT

The large popularity of web services and applications
makes their performance very critical. Reducing the
latency to retrieve web pages has become a real chal-
lenge. Caching is widely employed for this purpose.
In this paper, we address web caching by studying re-
placement policies based on fuzzy logic. We propose
an algorithm that applies a set of fuzzy control rules
to identify the pages to evict from the cache. We
study the performance of our algorithm via trace-
driven simulations using traces collected on various
Proxy servers.

Keywords
Web caching, fuzzy logic, replacement algorithm, per-
formance evaluation.

1. INTRODUCTION

Quality of Service and performance experienced by
end users are critical issues in the web domain. It
is widely recognized that slow web sites are the pri-
mary source of user dissatisfaction. As web services
and applications are gaining larger and larger pop-
ularity, reducing the latency to retrieve web pages
has become a real challenge. Caching is a mechanism
widely employed for this purpose. The idea of caching
is to store popular objects “closer” to the user who
requests them such that they can be retrieved faster.
Caching has also the effect of reducing the load of the

web servers and the traffic over the network.
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Web caching can be implemented at different lev-
els, i.e., client, server, network. The web browser and
the web server are responsible for caching at the client
and at the server side, respectively. Proxy servers are
used for caching at the network level.

A proxy server acts as an intermediary between
clients and web servers. Many organizations use proxy
servers in front of their LANS to save network band-
width and speedup web pages retrieval by serving the
requests locally. Upon receiving requests originating
by multiple clients, a proxy server checks its cache
to see whether it can serve these requests without ac-
cessing the original web servers. In the case of a cache
miss, that is, the requested page is not stored in the
proxy cache or it has expired, the proxy server for-
wards the request to the web server. Once the page is
returned by the server, the proxy sends it back to the
client and stores a copy in its local cache for future
requests. If the cache is full, one or more pages have
to be evicted to store the newly accessed page.

The efficiency and performance of proxy caches
mainly depend on their design and management. Re-
placement policies play a key role for the effective-
ness of caching. The goal of replacement policies is
to make the best use of the available resources by dy-
namically selecting the pages to be cached or evicted.

Replacement policies have been extensively stud-
ied and many papers appeared in the literature (see
e.g., [1], [2], [3], [4], [5], [6], [8], [11], [12], [14], [15]). A
few policies, e.g., Least Recently Used (LRU), Least
Frequently Used (LFU), are direct extensions of the
traditional replacement algorithms typical of the op-

erating system domain. Other policies, e.g., Greedy



Dual-Size (GDS), have been explicitly designed for
web environments.

Many generalizations of both traditional and web
specific policies have been proposed. In [2], the LRU
algorithm is generalized such as to take into account
access costs and expiration times. A generalization
of the GDS algorithm that incorporates short term
temporal locality and long term popularity of web
request streams is presented in [5]. In [11] random-
ized algorithms have been applied for approximating
any existing web cache scheme. The algorithms sam-
ple a few pages and replace the least useful pages of
the sample. In [14], the replacement strategies are
addressed in the framework of a model for optimizing
the content of the web cache. The model is based on
a genetic algorithm or an evolutionary programming
scheme.

In this paper, we address web caching replace-
ment policies in the framework of the fuzzy logic. Our
choice is motivated by the need to base the replace-
ment process on both qualitative and quantitative
information. Our algorithm takes into account the
characteristics and the properties of the workloads of
proxy servers and applies some qualitative reasoning
to identify the pages to evict from the cache. The
variables describing each web page are first “fuzzi-
fied”. A set of fuzzy control rules is then applied
and their outputs are “defuzzified” as to identify the
pages to evict.

The paper is organized as follows. Section 2 intro-
duces the fuzzy rules and describes the main steps of
the fuzzy algorithm. Section 3 discusses the perfor-
mance achieved by the algorithm using trace-driven
simulations with traces collected on various proxy
servers. Finally, Section 4 draws a few conclusions

and outlines future research directions.

2. THE FUZZY ALGORITHM

As previously stated, the replacement algorithm pro-
posed in this paper relies on fuzzy logic (see e.g., [7],
[9], [13]). When a cache miss occurs and the cache
is full, the algorithm determines the pages to evict
by computing for each page in the cache a figure of

merit, namely, its probability of replacement. Among

the pages ranked according to their probability of re-
placement, the algorithm chooses the pages with the
highest rank. In details, the first step towards the
construction of the algorithm deals with its design,
that is:

¢ identification of the input and output variables;

e definition of the Memberships Functions of each

input and output variable;

e construction of the rule base.

The proper choice of process state input variables and
control output variables is essential to the characteri-
zation of the operation of a fuzzy system. Hence, as a
preliminary step towards the construction of the fuzzy
algorithm, we have analyzed various proxy servers
of the NLANR cache hierarchy [10] with the aim
of understanding the properties and dynamic behav-
ior of their workloads. As a result of these analy-
ses, we have chosen three input variables to repre-
sent the process state. These variables describe each
web page in terms of its size (Size), access frequency
(Frequency), i.e., number of accesses, and access re-
cency (Time), i.e., time elapsed since last access. As
output variable, we have chosen the probability of re-
placement (RP) of each page.

For each of these variables, we have defined the fuzzy
sets with the Membership Functions (MFs) describ-
ing the degree of membership of the variable to the
corresponding fuzzy set.

Figures 1, 2 and 3 show the MFs of the three input
variables. As can be seen, we used MFs having trian-
gular or trapezoidal shapes. There are three MFs as-
sociated with the variables Size and Frequency. LOW,
MEDIUM, HIGH have been used as descriptive linguis-
tic values, i.e., labels, for these MFs.

To describe the variable Time we have chosen five
MFs. This was because the algorithm requires a finer
control of this variable. The corresponding descrip-
tive labels are VERY LOW, LOW, MEDIUM, HIGH, VERY
HIGH. The centers and the left and right limits of the
MFs have been obtained as a result of the analysis
of the proxy workloads. Note that the values shown
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in Fig. 3 correspond to the initializations as the cen-
ters of these MFs have to be dynamically updated
according to the values computed for all the pages in
the cache.

Figure 4 shows the MFs of the output variable,
that is, the probability of replacement RP. As can be
seen, four MF's, with descriptive labels LOW, MEDIUM,
HIGH, VERY HIGH, have been associated with this vari-
able.

Having defined the MFs, we construct the rule
base. The rule base consists of fuzzy conditional
statements in the form ¢ ‘if-then’’ in which the an-
tecedent is a condition in its application domain and
the consequent is a control action for the system un-
der control. Each rule involves in the antecedent one
or more variables.

There is no general procedure for deciding on the
optimal number of fuzzy control rules and the role of
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Figure 4: Membership Functions of the variable RP.

each variable. A number of factors is involved in this
decision. In our case, the rules are based on a quanti-
tative understanding of proxy workloads followed by
a calibration phase performed via simulations. We
have defined two sets of rules. The first set (Fuzzy20)
consists of 20 rules, whereas the second set (Fuzzy12)
consists of 12 rules. The rationale behind these rules
is to identify a few “well-defined” situations and let
the algorithm choose otherwise. The aim of Fuzzy20
is to keep in the cache the pages that have been ac-
cessed “very” recently, and to evict “large” pages.
Moreover, among pages with similar size, the rules
penalize the pages characterized by a “small” number
of accesses or by not being accessed “very” recently.
Figure 5 presents the Fuzzy12 rules. As can be seen,
the 12 rules have been designed as to take into ac-
count the variable Size only when a page is “large”,
namely, larger than the corresponding average.
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Figure 5: Fuzzy12 rules.

Once the design parameters have been defined,

the fuzzy algorithm proceeds as follows:

1. measurement of the values of the input data

from the proxy server;

fuzzification of the crisp input data into fuzzy

sets;
inference from fuzzy rules;

aggregation across the rules and defuzzification
of the fuzzy output into a non fuzzy control ac-

tion.

More specifically, the fuzzification has the effect of
scaling and mapping crisp input data into fuzzy sets
by means of the corresponding Membership Func-
tions. The input values related to each page are trans-
lated into linguistic concepts. For each rule, the an-
tecedent is evaluated and the degree of truth is com-
puted by applying the fuzzy and operator, that is,
the product. The aggregation process combines the
outputs of the rules by applying the maximum opera-
tor to each descriptive label of the output variable RP
(i-e., the probability of replacement). The defuzzifi-
cation transforms these four values into a nonfuzzy
control action corresponding to the probability of re-
placement of the page. The defuzzification used in
our algorithm is based on the method of the centroid.
The masses, obtained as a result of the aggregation
process, have been placed at the three points where

the MFs of the output variable RP intersect, that is,
at the points 0.25, 0.5, and 0.75. Moreover, the mass
corresponding to the label VERY HIGH has been placed
at 1.

As a final step, the pages are ranked according to
their probability of replacement. The algorithm then
evicts the pages with the highest rank.

Note that in what follows, we denote our fuzzy
algorithm by Fuzzy20 and Fuzzyl2 according to the

set of rules used.

3. PERFORMANCE EVALUATION

The evaluation of the performance of our fuzzy al-
The
simulations use traces of four proxies of the NLANR,
cache hierarchy [10]. SJ, UC, STARTAP and SV
denote the NLANR sites where the traces were col-
lected. The choice of these sites is motivated by the

gorithm is based on trace-driven simulations.

need to assess the performance and the sensitivity of
the algorithm under different workloads.

Table 1 summarizes the characteristics of the traces.
The traces were recorded during spring and summer
2002. For each trace we report the number of unique
pages and their total size (Mbytes). Moreover, we list
the percentage of the so—called “one—timers”, that is,
the pages that are requested only once and, as such,
are not worth to be cached. As can be seen, the work-
loads of the four proxies are very different in terms
of intensity and characteristics of the pages being re-



Trace Period Requests Pages Mbytes  One-timers
SJ 03/04-04/04 5,512,899 2,178,893 26,407.49 0.74
ucC 03/11-03/15 2,420,731 957,878  20,689.09 0.75
STARTAP 07/16-07/22 1,595,730 372,440  8,683.03 0.63
SV 08/15-08/21 2,856,904 795,351  22,102.10 0.61

Table 1: Main characteristics of the NLANR traces.

quested. In particular, the proxy UC processes on the
average 484,146 requests per day, whereas the work-
load intensity of the proxy SJ is much smaller. It
processes only about 172,278 requests per day. The
average size of unique pages is also quite different
across the proxies. It is about 28Kbytes for the SV
proxy, and 12Kbytes for the SJ proxy. Similar con-
siderations can be drawn for the percentage of one—
timers, that is equal to 61% for the SV proxy and to
75% for the UC proxy.

Before using these traces in the simulations, we
performed some pre-processing with the aim of ex-
cluding the requests corresponding to non-cacheable
pages (e.g., cgi-bin, .exe). On the average, we re-
moved about 10% of the requests. For example, we
removed 8.16% of the requests of the SJ trace and
14.2% of the requests of the SV trace.

In the simulations, we compare our fuzzy algo-
rithm (Fuzzy20 and Fuzzyl2) with the LFU, LRU,
and GDS replacement algorithms, as they represent
a reference in the framework of web caching. The ef-
ficiency of these replacement policies is evaluated as
a function of the cache size. In our experiments, the
cache size varies from a size of less than 2% to about
19% of the total number of unique bytes in the trace,
hereafter denoted as cache capacity.

Two performance metrics, namely, Hit Rate (HR)
and Byte Hit Rate (BHR), are used to evaluate the ef-
ficiency of the replacement algorithms. The Hit Rate
is a standard metrics in the cache domain that mea-
sures the fraction of requested pages retrieved in the
cache. The Byte Hit Rate is a metrics specific for the
web domain in that it takes into account the nonho-
mogeneity of the sizes of web pages. It is a measure of
the fraction of requested bytes retrieved directly from
the cache. Note that Fuzzy20 is aimed at maximiz-

ing the performance of the cache expressed in terms

Hit Rate

of the Hit Rate, whereas Fuzzyl2 is aimed at maxi-
mizing both the Hit Rate and Byte Hit Rate.
Figure 6 shows, as a function of the cache size, the
Hit Rate of the algorithms resulting from the simula-
tions with the SJ trace. As can be seen, both Fuzzy20

SJ Trace
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Figure 6: Hit Rate obtained in the experiments with
the SJ trace.

and Fuzzy12 outperform the others algorithms under
test, especially in the case of small cache size, i.e.,
less than 10% of the cache capacity, that is the typi-
cal size of most proxy caches. Moreover, as the cache
capacity increases, the three top curves approach the
upper bound HR«, equal to 0.548, corresponding to
a cache of infinite capacity where no eviction is re-
quired. It should also be noted that Fuzzy20 and
Fuzzy12 achieve more than 90% of HR with a cache
size as low as the 5% of its capacity.

We noticed that in the experiments performed
with the other three traces, the algorithms exhibit
a behavior similar to what shown in Fig. 6. As an
example, Figure 7 shows the behavior of the HR, ob-
tained in the simulations with the STARTAP trace.

As can be seen, despite of the characteristics of the



Hit Rate

Byte Hit Rate

workload of this proxy, the performance of Fuzzy20
and Fuzzyl2 is as good as the performance of GDS.
Note that in this case, the value of HR~ is much

larger, namely, equal to 0.786.
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Figure 7: Hit Rate obtained in the experiments with
the STARTAP trace.

The analysis of the performance of the algorithms
in terms of BHR shows that the algorithms exhibit
different behaviors. Figure 8 shows the BHR for sim-
ulations of the SJ trace. None of the algorithms out-
performs the others. As the cache capacity increases,
the LFU achieves the best BHR, even though the
BHR of Fuzzyl2 is only 0.5% smaller. For this trace
the value of BHR,, obtained with an infinite cache,
is equal to 0.634.
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Figure 8: Byte Hit Rate obtained in the experiments
with the SJ trace.

Byte Hit Rate

Figure 9 shows the BHR obtained in the simu-
lations with the UC trace. As can be seen, Fuzzyl2
outperforms the other algorithms, whereas Fuzzy20 is
the worst algorithm. The value of its Byte Hit Rate
is equal to 0.321 for a cache size equal to 1.7% of the
cache capacity and to 0.371 for a cache size equal to
14% of the cache capacity. For this trace the value of
BHR is equal to 0.455. It is also interesting to no-
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Figure 9: Byte Hit Rate obtained in the experiments
with the UC trace.

tice that the relative difference between the best and
the worst algorithm, with a cache size of about 3.4%
of the cache capacity, is about 15%. This means that
the efficiency of proxy caching can be significantly im-
proved by replacement policies aimed at maximizing
the Byte Hit Rate.

In summary, we can conclude that both Fuzzy20
and Fuzzyl2 achieve good performance in terms of
Hit Rate, whereas the efficiency of Fuzzyl2 is larger
when considering the Byte Hit Rate. Moreover, the
performance of our fuzzy algorithm is at least as good
as the performance of the GDS algorithm. Further-
more, the results of the simulations have also shown
another good property of the fuzzy algorithm, that
is, its ability to easily adapt to the characteristics of
the workload.

4. CONCLUSIONS

Replacement policies play a key role for the effec-
tiveness of web caching. The replacement algorithm
proposed in this paper is based on the fuzzy logic.



The choice of the pages to be evicted from the cache
is based on qualitative reasoning that takes into ac-
count the page characteristics.

The complexity of our algorithm is of the order of

the number of pages in the cache as it evaluates for
each page its probability of replacement. However,
even though this complexity is larger than the com-
plexity of most of the algorithms proposed in the lit-
erature, we do not think it is an issue. The workload
of a proxy server is typically I/O bound and the pro-
cessor is never the bottleneck of the system. Hence,
we believe that it is worth to invest a few extra CPU
cycles in a replacement policy that helps to save disk
and network accesses.
Moreover, the results of our simulations have shown
that the fuzzy algorithm achieves good performance
even for small cache size, that is, less than 10% of
the cache capacity. This means that the fuzzy ap-
proach allows a dramatic savings of the disk space to
be allocated for caching.

As a future work, we plan to address the caching
of dynamic pages in the framework of fuzzy logic. Our
aim is to define policies that take into account both
the availability of the pages and their attributes, such

as, freshness and consistency.
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