
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

ARTICLE TYPE

Evaluation of cloud autoscaling strategies under different
incoming workload patterns

Maria Carla Calzarossa1 | Luisa Massari1 | Daniele Tessera2

1Department of Electrical, Computer and
Biomedical Engineering, Università di Pavia,
Pavia, Italy

2Department of Mathematics and Physics,
Università Cattolica del Sacro Cuore, Brescia,
Italy

Correspondence
*Luisa Massari, Email: luisa.massari@unipv.it

Present Address
Department of Electrical, Computer and
Biomedical Engineering, Università di Pavia,
Via Ferrata 5 - I-27100 Pavia, Italy

Summary
Cloud computing provides cost effective solutions for deploying services and applications. Even

though resources can be provisioned on demand, they need to adapt quickly and in a seamless

way to the workload intensity and characteristics and satisfy at the same time the desired per-

formance levels. In this paper, we evaluate the effects exercised by different incoming workload

patterns on cloud autoscaling strategies. More specifically, we focus on workloads characterized

by periodic, continuously growing, diurnal and unpredictable arrival patterns. To test these work-

loads, we simulate a realistic cloud infrastructure using customized extensions of the CloudSim

simulation toolkit. The simulation experiments allow us to evaluate the cloud performance under

different workload conditions and assess the benefits of autoscaling policies as well as the effects

of their configuration settings.
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1 INTRODUCTION

Cloud technologies are being used nowadays in many scientific and business domains because of their ability to offer cost effective scalable
solutions based on a pay-per-use model. This model – coupled with the native features of the cloud computing paradigm, such as virtualization,
rapid elasticity, resource pooling – gives customers the possibility to efficiently deploy their applications and reduce the corresponding monetary
cost.

A key factor of these technologies is the elasticity that allows the adaptation of the resources being provisioned to time varying workloads.
Resources can be provisioned (i.e., allocated and deallocated) on demand 1, that is, when they are actually needed. Although very flexible, dynamic
resource provisioning is quite challenging. In fact, to avoid under-provisioning and over-provisioning, it is necessary to accurately take account of
the fluctuations of the workloads being processed.

The workloads deployed in cloud environments consist of many different types of services and applications with their own resource demands
and performance requirements 2,3. The intensity of these workloads and their arrival patterns often change rapidly and even in unpredictable
manners as a consequence of the user interactions. Therefore, to cope with this variability and avoid at the same time performance degradations
and service level violations, the decisions about provisioning of cloud resources must be taken automatically and in a timely manner.

In this article we address these issues by extending in various directions our previous work on cloud autoscaling 4. More precisely, we define a
modeling framework built around three main components, namely:

• workloads;

• cloud resources;
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• workload and resource management.

In particular, among the various aspects entailed in workload and resource management, our modeling framework addresses the distribution of
workloads to cloud resources (i.e., scheduling) and the dynamic provision of the “right” amount of resources at the “right” time according to the
actual load conditions (i.e., autoscaling). Moreover, to evaluate cloud performance in different scenarios (e.g., workload characteristics, resource
settings) we implement the framework in a simulation environment based on the CloudSim simulation toolkit 5 because of its ability to reproduce
realistic cloud environments. Our experiments focus on workloads characterized by periodic, continuously growing, diurnal and unpredictable
arrival patterns simulated under different autoscaling policies.

The paper is organized as follows. In Section 2 we present a review of the state of the art. The modeling framework for evaluating cloud
performance under different workload conditions is defined in Section 3. The simulation environment that implements this framework is described
in Section 4, whereas in Section 5 we present the setup of the simulation experiments and their results. Finally, we conclude the paper with some
remarks in Section 6.

2 RELATEDWORK

In this section we review the state of the art in the areas of workload and resource management and simulation environments developed for
evaluating the performance of workloads and cloud infrastructures.

2.1 Workload and autoscaling
The issues related toworkload and resourcemanagement in cloud environments have been extensively studiedwith themain objective of efficiently
provisioning the resources and satisfying at the same time the service levels associated with the workloads being processed. In this framework,
the availability of accurate workload models is fundamental. Some papers 6,7,8 focus on specific aspects of the workload arrival process, while
others 9,10 address the problem of workload generation from the perspective of the cloud users. In particular, Magalhães et al. 9 propose web
workload models that capture different user patterns. Solis Moreno et al 10 model the user behavior in terms of task submission rate and CPU and
memory requirements. This study shows that submission rates are highly variable, thus highlighting the heterogeneity of cloud workloads.

In the framework of resource management, comprehensive surveys and taxonomies of cloud autoscaling policies have been published in the
literature 1,11,12. In general, these policies focus on various objectives, such as improving performance, increasing resource utilization, saving energy,
reducingmonetary cost and ensuring availability. The decisions about the allocation or deallocation of cloud resources often rely on somemonitored
or predicted low-level performance indicators (e.g., CPU, memory, network utilization) or high-level indicators (e.g., response time) based on the
QoS perceived by users 13,14. Ilyushkin et al. 15 propose a method that enables cloud users and providers to compare the performance of different
autoscalers and exercise a simple control over elasticity when running workflow-based workloads.

Autoscaling policies are usually classified in two categories, namely, reactive and proactive, depending on the approach used to trigger scaling
actions. On the one hand, reactive policies 16,17 are simpler because resource provisioning responds to workload changes. Nevertheless, these
policies may be slow in detecting the changes and their performance is affected by their configuration settings.

On the other hand, proactive policies implement forecasting techniques that try to anticipate the future needs and trigger scaling actions
based on these predictions. To predict workload changes, techniques, such as machine learning and neural networks, are usually applied 18,19,20,21.
Moreover, to manage unpredicted changes, some works 22,23,24,25 combine proactive autoscaling approaches – driven by workload models – with
reactive approaches.

In this work, we do not propose any new autoscaling policy, instead we apply state of the art reactive autoscaling policies to investigate the
impact on the performance of different workload patterns and of the configuration settings of the policies.

2.2 Simulation environments
The performance of the resource management and scheduling solutions is often evaluated with simulation approaches, since evaluations carried
out in real cloud environments can be expensive and often unfeasible. In fact, it is difficult to perform repeatable experiments especially in case of
resources offered by public cloud providers.

Most simulation frameworks – see 26 for a survey – rely on the CloudSim simulation toolkit 5 and its extensions. In particular, Vondra et al. 27

extend the CloudSim toolkit for adding and removing VMs at runtime and for accurately simulating interactive workloads. CloudAnalyst 28 supports
visual modeling and simulation of large-scale cloud applications described in terms of number and location of users generating the traffic, number
and location of data centers and number of resources in each data center. NetworkCloudSim 29 provides extensions to specify the network topology.
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Piraghaj et al. 30 propose ContainerCloudSim, a tool that supports the evaluation of scheduling and allocation policies in containerized cloud data
centers.

Similarly to these works, we develop a simulation environment implemented as customized extensions of the CloudSim toolkit. Our environment
enables the performance evaluation of autoscaling policies under workloads with different characteristics and arrival patterns.

3 MODELING FRAMEWORK

To assess cloud performance under different working scenarios, we propose a modeling framework consisting of three main components – namely,
workloads, cloud resources, workload and resource management – interacting together (see Figure 1). In particular, the workload is the set of
requests submitted by the users to the cloud infrastructure. In turn, the infrastructure consists of the resources, e.g., VMs, that can be provisioned.
In the figure we can identify some resources already provisioned and some others available for provisioning. Finally, workload and resource man-

Cloud Infrastructure

Resources

ON ON ONON ON OFF OFFOFFOFF

Workload and Resource Management

Scheduling Autoscaling

Workloads

FIGURE 1Modeling framework.

agement deals with scheduling the user requests into the cloud resources and dynamically adapting the resources according to the load conditions,
i.e., autoscaling.

In what follows, we explore the overall properties of cloud workloads and the role of the management components in relation to the
characteristics of the workloads being processed and of the cloud resources.

3.1 Cloud workloads
As already pointed out, the amount of provisioned resources depends on the characteristics of the incoming workloads. In particular, different
workload types and arrival patterns have different impacts on the usage of cloud resources. Therefore, it is important to have a clear understanding
of the behaviors of the workloads.

Three main dimensions are typically considered for describing and classifying the workloads 3, namely:

• processing model;

• architectural structure;

• resource requirements.

In particular, two broad workload categories, i.e., batch and interactive, are easily identified according to their processing model. More precisely,
batchworkloads usually refer to long lived computation-intensive applications processedwithout any user intervention, while interactiveworkloads
refer to short lived request/response applications submitted by a variable number of concurrent users.

Moreover, since the deployment of many applications and services often relies on the instantiation of multiple tasks (or services), their architec-
tural structure explains how the components are organized and interact together to cope with the control and data flows of these applications. In
general, these composite applications can consist of loosely coupled tasks – to be executed sequentially or in parallel – or of tightly coupled tasks
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– whose execution is driven by precedence constraints among tasks. A Direct Acyclic Graph – whose nodes correspond to tasks and whose edges
describe their constraints – is typically used to represent a task-oriented application, such as a workflow.

The third key dimension for describing the workloads is represented by their resource requirements, i.e., their demands. These quantitative
attributes can refer to an entire application or to individual tasks of composite applications. Depending on the resources being exploited, the
demands are defined as follows:

• computation demand, that is, amount of processing;

• memory demand, that is, amount of RAM;

• communication demand, that is, data volume to be exchanged with other tasks;

• transfer demand, that is, data volume to be transferred to/from (local or remote) I/O devices.

Note that these attributes are the basis for identifying – by applyingmultivariate analysis techniques – classes of workloads with different behaviors
in terms of resource usage. This identification is an important step to accurately model and represent the peculiarities of the workloads being
processed.

As for the workload demands, the frequency at which batch or interactive applications are submitted by the users, that is, their arrival rate,
is another key aspect that affects the usage of cloud resources and has to be considered for effective resource provisioning. Workload streams
are seldom deterministic, instead they are characterized by patterns that reflect the user behaviors. In detail, arrival patterns experience different
effects, e.g., business hours, week vs weekend days, seasonality, flash crowd 31. For example, diurnal patterns are characterized by higher rates
during business hours and weekdays than over night and weekend days. Similarly, seasonality leads to patterns that periodically repeat in time,
while continuously changing workloads often experience a steady growth. On the contrary, unpredictable events, such as flash crowds, cause
sudden increases of the workload intensity, thus leading to unexpected peaks of load.

3.2 Cloud resources
The characteristics of the resources offered by cloud providers mainly refer to the performance of the individual VMs, namely:

• processing capacity;

• memory size;

• network bandwidth;

• transfer rate to/from I/O devices.

These characteristics affect the overall performance and the monetary cost associated with the workloads being processed. Therefore, to reduce
monetary cost, cloud resources have to be dynamically allocated/deallocated according to the actual workload requirements.

3.3 Workload and resource management
The workload and resources management is a fundamental component of any cloud infrastructure in that it affects the overall efficiency of the
infrastructure and in particular the exploitation of the resources as well as the performance experienced by the users. In our modeling framework
we consider two critical aspects of the management dealing with workload scheduling and resource autoscaling.

3.3.1 Workload scheduling
As already pointed out, scheduling deals with distributing the incoming workloads to cloud resources. In particular, scheduling has to handle the
workloads in an efficient manner and ensure at the same time their requirements (e.g., number of cores, memory size). Moreover, scheduling can
be performed at the level of entire applications or at the level of individual tasks of composite applications.

Scheduling decisions are driven by different objectives (e.g., load balancing, VM consolidation). Hence, the scheduling policies have to be chosen
accordingly. For example, for balancing the load across a pool of VMs, scheduling policies, such as Round Robin or Weighted Round Robin, are
applied, while for VM consolidation the scheduling decisions need to be coupled with autoscaling strategies.
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3.3.2 Resource autoscaling
Resource autoscaling focuses on dynamically provisioning and releasing resources. In our framework, autoscaling decisions are based on estimations
of some scaling indicators that quantify the actual performance (e.g., response time, throughput, VM utilization) of the cloud infrastructure. Static
or dynamic thresholds associated with these indicators trigger scaling actions. These actions may also be triggered by predictions of the future
incoming workloads and therefore of the future resource needs.

In general, the effectiveness of autoscaling mechanisms depends on many factors, including – among the others – the characteristics of the
workloads and in particular of their incoming arrival patterns.

4 SIMULATION ENVIRONMENT

As already stated, the modeling framework presented in Section 3 has been implemented in a simulation environment based on the CloudSim 4.0
simulation toolkit. Figure 2 depicts the overall architecture of our environment We can identify various types of components, namely, components

Workload
specs

Monitoring
Scheduler

Autoscaler

Extended
CloudSim

Simulation
logs

Scheduling and
autoscaling specs

Resource
specs

Workload
generator

Broker

Workload and
resource manager

FIGURE 2 Architecture of the simulation environment.

that define the input specifications (i.e., Workload, Resource, Scheduling and autoscaling specs) and components that implement the modeling
framework (i.e., Workload generator, Broker, Workload and resource manager). In addition, we identify a service component (i.e., Monitoring) that
collects performance data into Simulation logs. The architecture includes the CloudSim simulation engine (i.e., Extended CloudSim) customized
for integrating the various components of our simulation environment. In what follow, we describe the individual components of our simulation
environment starting from the specifications to be provided.

The input specifications define the characteristics of the workload (e.g., incoming arrival patterns and resource demands), of the resources (e.g.,
VM processing capacity, startup time) and of the scheduling and autoscaling policies (e.g., policy, thresholds, cooling time). These specifications
drive at simulation time the components responsible for generating the workload, allocating the resources as well as for mapping workload and
resources and for their dynamic provisioning .

In particular, the Workload generator component generates workloads in terms of their arrival patterns and demands. In detail, arrivals are
generated according to some basic patterns, such as growing, periodic and unpredictable, or their combinations. Moreover, thanks to the Stochastic
Simulation in Java (SSJ) software library 32 workload demands can be described in terms of probability distributions.

The Workload and resource manager is the component responsible of scheduling the workload to the most suitable VMs (Scheduler) and of
dynamically adapting (i.e., provisioning, releasing) the number of allocated VMs according to the time varying workload behavior (Autoscaler).
Note that to decide about scheduling and autoscaling activities, this component relies on performance data (e.g., VM utilization) provided by the
Monitoring component.

In detail, the Scheduler tries to balance the load among the available VMs by cooperating with the Autoscaler. For example, VMs that are about to
be released by the Autoscaler will not be considered for scheduling new incoming workload requests. On the contrary, requests will be scheduled
to newly allocated VMs as soon as they become ready. In fact, our simulation environment implements the concept of VM startup time 33, that is,
the delay between the time a VM is provisioned and it is ready. The Scheduler implements well known scheduling policies 34, such as Least Recently
Used, Round Robin, Weighted Round Robin and Constrained Scheduling.
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The Autoscaler implements two reactive policies, namely, Average Load and Discrete Sampling. These policies aim at keeping the utilization of
allocated VMs, that is, the fraction of time they are busy processing, within predefined thresholds. For this purpose, the policies compute scaling
indicators based on some recent historical data of the VMs. More precisely, the Average Load policy focuses on the behavior of the individual VMs
and computes as indicator the utilization over time of each VM. On the contrary, the Discrete Sampling policy considers the behavior of all VMs
and computes as indicator the fraction of busy VMs. Scaling actions are then triggered according to these indicators.

Autoscaling specifications define the thresholds that trigger scaling actions, the number of VMs to be allocated/deallocated at each action as
well as other specific configuration parameters (e.g., time interval used for computing the individual VMutilization, number of samples and sampling
interval for computing the fraction of busy VMs).

To avoid oscillations in scaling actions and take account of the cause-effect principle, autoscaling policies adopt a grace time period, namely, a
cooling time, between two consecutive actions. This time – defined in the autoscaling specifications – allows the Scheduler to adapt to the available
number of VMs before any further scaling action.

The interactions among the various components of our simulation environment and the Extended CloudSim are orchestrated by the Broker com-
ponent. More precisely, this component collects the workload arrivals from theWorkload generator and forwards them to the CloudSim simulation
engine according to the resource management directives. Similarly, the Broker forwards the specifications of the VMs available for provisioning to
the simulation engine.

5 PERFORMANCE EVALUATION

The simulation environment presented in Section 4 is the basis for evaluating the performance of the workloads and the benefits of the proposed
autoscaling policies and for assessing the effects exercised by their configuration parameters. In fact, simulation is widely used in cloud environ-
ments because of its ability to run experiments in repeatable and controlled conditions. For this purpose, we simulate the deployment of workloads
– characterized by different arrival patterns and resource demands – on a cloud infrastructure consisting of multiple instances of a single VM type.
In what follows, we present the details of the setup and the results of the simulation experiments.

5.1 Experiment setup
The setup of the simulation experiments refers to the specifications of the characteristics of the workloads and of their arrival process as well as
of the configuration parameters associated with the resource management policies.

5.1.1 Workload specifications
In our comprehensive evaluation we simulate the static and dynamic behaviors of the workloads by varying the following characteristics:

1. Workload composition:

• stand alone applications statistically identical in terms of resource demands;

• composite applications grouped in different classes according to their resource demands;

• web requests drawn from a real workload.

2. Workload arrival process:

• arrival rate;

• arrival patterns (i.e., growing, periodic, unpredictable, diurnal).

3. Resource requirements:

• constant;

• probability distributions that account for the variable nature of the workloads.

Note that in our experiments the resource requirements of the applications refer to their computation demands. Moreover, to take fully account
of the user behaviors, we consider a simulated time of at least an hour, while for reproducing the diurnal patterns we consider a 24 hours simulated
time.
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5.1.2 Management specifications
Specifications about themanagement of the cloud resources refer to a large number of critical parameters that control the behavior of the Scheduler
and Autoscaler. These specifications include the choice of the autoscaling policy and the parameters that drive the autoscaling decisions (e.g.,
number of samples, sampling interval). Other important parameters that affect the behavior and performance of autoscalers refer to the lower
and upper thresholds that trigger scaling actions as well as how often the indicator is checked (in our simulations every second), the cooling time
between two consecutive actions, the time resolution of theMonitoring and the number of VMs to be provisioned or released at each scaling action
– referred to as DeltaVM in what follows. In addition, the specifications define the properties of the VMs, i.e., their processing capacity and startup
time. Finally, for distributing the incoming requests across the allocated VMs, the specifications define the scheduling policy – that is, Weighted
Round Robin in our experiments.

Table 1 summarizes the main management parameters that characterize all simulation experiments.

VM startup time Monitoring resolution Thresholds Cooling time
[s] [s] Lower Upper [s]
30 0.1 0.4 0.8 35

TABLE 1Management specifications.

5.2 Experimental results
To assess the behavior and performance of the workload and of the autoscaling policies, we perform three sets of experiments by varying the work-
load characteristics and the configuration parameters of the resource management policies. For these evaluations, we consider various metrics,
e.g,. completion time, number of scaling actions, VM utilization. Moreover, in order to assess how fast a policy reacts to over/underload condi-
tions, we compute how often the VM utilization is above or below the predefined thresholds – in what follows referred to as PctOverLoad and
PctUnderLoad, respectively.

5.2.1 Static and dynamic provisioning
The first set of experiments is aimed at assessing the benefits of a dynamic resource provisioning with respect to a static one. The workload
considered in these experiments consists of simple standalone applications composed of a single task whose processing demand is equal to 522
ms. These applications are submitted by the users according to two distinct arrival patterns, namely, continuously growing and unpredictable (see
Fig. 3). The growing pattern is characterized by a rate linearly increasing from 100 up to 6,000 requests/min in one hour simulated time, that is, on
average 3,050 requests/min. On the contrary, for the unpredictable pattern, the behavior of the arrivals suddenly changes and their rate increases
of two orders of magnitude in about 20 minutes (from 30 up to 2,400 requests/min). The average arrival rate over two hours simulated time is
equal to 1,123 requests/min.

Resources are provisioned according to the Discrete Sampling policy – with scaling indicator computed at one-second resolution over the three
latest samples of the VM utilization. Let us recall that the thresholds associated with scaling actions are equal to 0.4 and 0.8. In addition, the
number of VMs to be provisioned/released at each scaling action varies over the simulated time and is set to 10% of the number of allocated VMs.
Figure 3 suggests that the number of allocated VMs nicely follows the growing arrival pattern, whereas for the unpredictable pattern the policy
reacts more slowly and VMs are not released as soon as the arrival rate decreases.

To assess the benefits of dynamic provisioning, we compare its performance with the performance of static provisioning. For this purpose, we
allocate 36 and 74 VMs in the simulation experiments with the growing arrival pattern and 16 and 31 VMs in the simulation experiments with the
unpredictable pattern. These values correspond to the average (Avg) and maximum (Max) numbers of VMs provisioned by the Discrete Sampling
policy. As can be seen in Fig. 3, since static provisioning does not take account of the workload patterns, it often leads to either under-provisioning
or over-provisioning.

More details about these experiments are presented in Table 2. In particular, the table summarizes the application completion time and the
utilization of the provisioned VMs together with the PctOverLoad and PctUnderLoad that quantify how often the VM utilization is above/below
the upper/lower thresholds over the simulated time. As expected, the applications are completed very quickly in the case of over-provisioning
(i.e., Max) – although VMs are poorly utilized. On the contrary, even though the experiments with the autoscaling policy and Avg provisioning lead
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FIGURE 3 Continuously growing (a) and unpredictable (b) workload patterns (black lines) and number of VMs (red step functions) allocated by the
Discrete Sampling autoscaling policy. Blue lines represent the static Avg provisioning.

Growing pattern Unpredictable pattern
Completion VM PctOverLoad PctUnderLoad Completion VM PctOverLoad PctUnderLoad
time [s] utilization ≥ 0.8 ≤ 0.4 time [s] utilization ≥ 0.8 ≤ 0.4

Autoscaling 2.03 0.72 31.27% 1.56% 4.49 0.58 19.14% 19.25%
Avg 51.6 0.66 46.78% 29.08% 159.40 0.60 38.96% 32.89%
Max 1.35 0.35 2.02% 60.22% 0.73 0.31 0.49% 72.63%

TABLE 2 Summary of the performance of the Discrete Sampling autoscaling policy and of static provisioning (i.e., Avg, Max) for growing and
unpredictable workload patterns.

to similar VM utilizations, the application completion times are very different. In fact, the number of allocated VMs does not take account of the
actual workload increase and becomes insufficient. We remark that these behaviors do not depend on the arrival patterns. Moreover, because
of the peculiarity of the growing pattern, the VM utilization obtained with autoscaling is higher and in particular the PctUnderLoad is only 1.56%.
Hence, autoscaling provides a good compromise between cloud resource usage and workload performance.

5.2.2 Autoscaling parameter configuration
The second set of experiments is aimed at studying the impact of the configuration parameters associated with the resource management policies
under different workloads. Both Discrete Sampling and Average Load policies are evaluated.

Discrete Sampling policy
We test the Discrete Sampling policy under different configuration parameters, by varying DeltaVM – that is the number of VMs allocated/deallo-
cated at each scaling action – and the number of samples for computing the scaling indicator.

The workload consists of composite applications subdivided into three groups according to their processing demands, namely, short applications
– whose demands are uniformly distributed in the range [10, 14]ms –medium applications – whose demands are uniformly distributed in the range
[200, 240]ms – and large applications – whose demands are uniformly distributed in the range [400, 522]ms. The arrival process follows a periodic
pattern, characterized by a rapid increase followed by a rapid decrease with a rate ranging from 200 to 12,000 requests/min.

For this type of pattern, the choice of the value of DeltaVM is very important. Indeed, to quickly react to the high variability of the workload
arrivals and to their sudden changes, the processing capacity of the VMs to be allocated/deallocated has to match the workload characteristics and
intensity. Hence, instead of provisioning/releasing a fixed number of VMs at a time – that may be too conservative or aggressive – it is appropriate
to choose a variable number proportional to the number of allocated VMs (by specifying the corresponding percentage). As shown in Figure 4, the
autoscaling policy better adapts the resource provisioning to the workload arrival pattern when a larger number of VMs is allocated/deallocated
at each scaling action (i.e., DeltaVM equal to 25%).

This workload has also been used to evaluate the sensitivity of the autoscaling policy varying the number of samples used to compute the
scaling indicator. Figure 5 shows a snapshot of these behaviors with one, three and ten samples. We notice that a small number of samples leads
to oscillations in the number of allocated VMs. On the contrary, a large number of samples makes the policy slow in reacting to workload changes.
Simulation experiments with more complex workloads – characterized by different arrival patterns – confirm these results.
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FIGURE 4 Behavior of the Discrete Sampling autoscaling policy with DeltaVM equal to 10% (a) and 25% (b). Black curves correspond to the arrival
patterns, red step functions to the allocated VMs.
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FIGURE 5 Behavior of the Discrete Sampling autoscaling policy varying the number of samples for the computation of the scaling indicator. Black
curves correspond to the arrival patterns, red step functions to the allocated VMs.

Average Load policy
To evaluate the performance of the Average Load policy under different flavors, we use as scaling indicator the utilization over time of each VM
and we vary the condition that triggers the autoscaling action as follows:

(a) at least one indicator above/below thresholds;

(b) mean of all indicators above/below thresholds;

(c) all indicators above/below thresholds.

As configuration parameters, we set a time interval equal to three seconds for computing the indicator and DeltaVM equal to 10% for the scaling
actions.

The workload considered in these experiments – characterized by a growing arrival pattern – consists of composite applications with a core
component that – upon completion – instantiates 40 components at 0.1 seconds apart from each other. These components – subdivided into three
groups according to their processing demands– are scheduled on the same VM and processed sequentially or in parallel according to their arrival
time and processing demand.

Figure 6 depicts the behavior of the three flavors of the policy as a function of simulated time. The step function represents the number of VMs
allocated and the light blue area the unused processing capacity. Figure 6(c) suggests that, whenever all indicators are required to be above/below
thresholds, the cost of the autoscaling – in terms of number of scaling actions – is minimized, even though the policy is quite conservative. In
addition, a closer look of the VM utilizations (see Fig. 7) shows that the PctOverLoad is about 40%.

In summary, as Table 3 suggests, autoscaling decisions based on the mean of all indicators result in a good compromise between resource
provisioning and performance.
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FIGURE 6 Number of allocated VMs for the Average Load policy whose scaling actions are triggered by at least one indicator (a), mean of all
indicators (b) and all indicators (c). The light blue area represents the unused processing capacity.
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FIGURE 7 VM utilization as a function of simulated time for Average Load policy whose scaling actions are triggered by at least one indicator (a),
mean of all indicators (b) and all indicators (c).

At least one Mean All
Number of scaling actions 72 27 15
VM utilization 0.58 0.68 0.76
Completion time [s] 4.1 4.5 5.6

TABLE 3 Performance of Average Load policy whose scaling actions are triggered by at least one indicator, mean of all indicators and all indicators.

5.3 Web workload
The last set of experiments is aimed at assessing the performance of the autoscaling policies when processing web requests drawn from a real
workload. In particular, the experiments are driven by a workload model derived from measurements collected on the web server of the University
of Pavia during a 24 hours period. Some 330,000 HTTP requests for web pages were received and processed by the web server. The composition
of the web pages, that is, number of embedded objects and their size, is obtained by analyzing the structural properties of the website. A page
consists of an HTML file that on average references 40 embedded objects. The processing demand of each object is set proportional to its size
and is described in terms of two equally probable uniform distributions, one in the range [0.2, 2] µs and the other in the range [110, 118] ms.

Another important characteristic of the workload model is the interarrival time between two consecutive requests to the embedded objects of
a given page. Since these times are usually quite small, that is, one second or less, we model them using two uniform distributions in the range
[0, 1] s and [1, 2] s, respectively. The probabilities associated with these distributions are set to 0.97 and 0.03.

In these experiments, we consider the Discrete Sampling autoscaling policy – with scaling indicator computed over four samples and DeltaVM
equal to one. Figure 8 shows the daily arrival pattern as a function of time and the behavior of the autoscaling policy in terms of the number of
allocated VMs. The workload intensity is characterized by a clear diurnal pattern, with much fewer requests – as little as 42 requests/min – during
the night and early morning hours, and a peak of about 400 requests/min around noon. To cope with this variability, up to 23 VMs are allocated
during the simulated time, with a mean of 14 VMs. In addition, as expected, the average VM utilization is equal to 0.61. This is in line with the
upper and lower thresholds (i.e., 0.8 and 0.4) used in these experiments.

This workload has also been used to test the new HTTP/2 protocol 35 and in particular the so called “server push” optimization mechanism that
allows web servers to speculatively send resources without waiting for explicit client requests. Therefore, for improving the time required to load
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FIGURE 8 Daily request arrival pattern (black curve) and number of allocated VMs (red step function).

the entire web page, a single HTTP request can trigger multiple HTTP responses. In this experiment, we assume that half of the embedded objects
is pushed by the web server, while the other half is explicitly requested by the client. Table 4 provides basic statistics of the time required to process
a web page without and with pushing mechanism. The cumulative distribution functions of the time spent to process a page are shown in Fig. 9.

Minimum Mean Maximum
No push 12.3 21.2 38.4
Push 5.1 11.0 22.1

TABLE 4 Time – expressed in seconds – to process a web page without and with the push mechanism.

In details, the red curve refers to the experiment without any pushing, whereas the blue curve refers to the experiment with pushing. We notice
that pushing mechanism allows for a reduction of this time of about 50%.
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FIGURE 9 Cumulative distribution functions of the time required to process a Web page without (red curve) and with (blue curve) pushing.

6 CONCLUSIONS

Cloud technologies offer cost effective scalable solutions for deploying applications and services. The evaluation of the behaviors and performance
of these technologies is very challenging and has to take account of the workload and infrastructure characteristics as well as of the complex
strategies adopted to efficiently provision and manage cloud resources.

In this article we defined a modeling framework that copes with these issues. In particular, our framework covers the various aspects entailed in
cloud management by focusing in particular on workload scheduling and resource autoscaling. To assess the effects exercised by different incoming
workload patterns on the behavior and performance of autoscaling strategies, we implemented the framework as customized extensions of the
CloudSim simulation toolkit because of its capability to reproduce realistic cloud environments.
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In our experiments we simulated various types of workloads, namely, simple standalone applications and composite applications – consisting of
single and multiple components – as well as web workloads. Moreover, we considered arrival patterns typical of cloud workloads, namely, periodic,
growing, unpredictable and diurnal. As expected, the simulation experiments have shown that autoscaling policies improve VM utilization with
respect to a static resource provisioning independently of the workload characteristics and patterns. However, the performance of these policies
is strongly affected by the choice of their configuration parameters which in turn depend on the workloads being processed.
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